These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Taurocholic acid, a primary 12α-hydroxylated bile acid, induces leakiness in the distal small intestine in rats. Liu H, Kohmoto O, Sakaguchi A, Hori S, Tochigi M, Tada K, Lee Y, Kikuchi K, Ishizuka S. Food Chem Toxicol; 2022 Jul; 165():113136. PubMed ID: 35584729 [Abstract] [Full Text] [Related]
4. Dietary raffinose ameliorates hepatic lipid accumulation induced by cholic acid via modulation of enterohepatic bile acid circulation in rats. Maegawa K, Koyama H, Fukiya S, Yokota A, Ueda K, Ishizuka S. Br J Nutr; 2022 Jun 14; 127(11):1621-1630. PubMed ID: 34256877 [Abstract] [Full Text] [Related]
5. Association between 12α-hydroxylated bile acids and hepatic steatosis in rats fed a high-fat diet. Hori S, Abe T, Lee DG, Fukiya S, Yokota A, Aso N, Shirouchi B, Sato M, Ishizuka S. J Nutr Biochem; 2020 Sep 14; 83():108412. PubMed ID: 32534424 [Abstract] [Full Text] [Related]
6. Primary 12α-Hydroxylated Bile Acids Lower Hepatic Iron Concentration in Rats. Hori S, Satake M, Kohmoto O, Takagi R, Okada K, Fukiya S, Yokota A, Ishizuka S. J Nutr; 2021 Mar 11; 151(3):523-530. PubMed ID: 33438034 [Abstract] [Full Text] [Related]
7. Ingestion of difructose anhydride III partially suppresses the deconjugation and 7α-dehydroxylation of bile acids in rats fed with a cholic acid-supplemented diet. Lee DG, Hori S, Kohmoto O, Kitta S, Yoshida R, Tanaka Y, Shimizu H, Takahashi K, Nagura T, Uchino H, Fukiya S, Yokota A, Ishizuka S. Biosci Biotechnol Biochem; 2019 Jul 11; 83(7):1329-1335. PubMed ID: 30912732 [Abstract] [Full Text] [Related]
8. Metabolic alterations of the gut-liver axis induced by cholic acid contribute to hepatic steatosis in rats. Liu H, Yokoyama F, Ishizuka S. Biochim Biophys Acta Mol Cell Biol Lipids; 2023 Jul 11; 1868(7):159319. PubMed ID: 37075973 [Abstract] [Full Text] [Related]
9. A diet supplemented with cholic acid elevates blood pressure accompanied by albuminuria in rats. Shimoda T, Shimizu H, Iwasaki W, Liu H, Kamo Y, Tada K, Hanai T, Hori S, Joe GH, Tanaka Y, Sato M, Miyazaki H, Ishizuka S. Biosci Biotechnol Biochem; 2023 Mar 21; 87(4):434-441. PubMed ID: 36623851 [Abstract] [Full Text] [Related]
10. Cholesterol feeding prevents hepatic accumulation of bile acids in cholic acid-fed farnesoid X receptor (FXR)-null mice: FXR-independent suppression of intestinal bile acid absorption. Miyata M, Matsuda Y, Nomoto M, Takamatsu Y, Sato N, Hamatsu M, Dawson PA, Gonzalez FJ, Yamazoe Y. Drug Metab Dispos; 2009 Feb 21; 37(2):338-44. PubMed ID: 18988759 [Abstract] [Full Text] [Related]
11. The ratio of 12α to non-12-hydroxylated bile acids reflects hepatic triacylglycerol accumulation in high-fat diet-fed C57BL/6J mice. Iwasaki W, Yoshida R, Liu H, Hori S, Otsubo Y, Tanaka Y, Sato M, Ishizuka S. Sci Rep; 2022 Oct 06; 12(1):16707. PubMed ID: 36202928 [Abstract] [Full Text] [Related]
12. Taurine feeding inhibits bile acid absorption from the ileum in rats fed a high cholesterol and high fat diet. Nishimura N, Yamamoto T, Ota T. Adv Exp Med Biol; 2009 Oct 06; 643():285-91. PubMed ID: 19239159 [Abstract] [Full Text] [Related]
13. 12α-Hydroxylated bile acid induces hepatic steatosis with dysbiosis in rats. Lee JY, Shimizu H, Hagio M, Fukiya S, Watanabe M, Tanaka Y, Joe GH, Iwaya H, Yoshitsugu R, Kikuchi K, Tsuji M, Baba N, Nose T, Tada K, Hanai T, Hori S, Takeuchi A, Furukawa Y, Shirouchi B, Sato M, Ooka T, Ogura Y, Hayashi T, Yokota A, Ishizuka S. Biochim Biophys Acta Mol Cell Biol Lipids; 2020 Dec 06; 1865(12):158811. PubMed ID: 32896622 [Abstract] [Full Text] [Related]
14. Combination of soya pulp and Bacillus coagulans lilac-01 improves intestinal bile acid metabolism without impairing the effects of prebiotics in rats fed a cholic acid-supplemented diet. Lee Y, Yoshitsugu R, Kikuchi K, Joe GH, Tsuji M, Nose T, Shimizu H, Hara H, Minamida K, Miwa K, Ishizuka S. Br J Nutr; 2016 Aug 06; 116(4):603-10. PubMed ID: 27464459 [Abstract] [Full Text] [Related]
15. Alteration of Bile Acid Metabolism by a High-Fat Diet Is Associated with Plasma Transaminase Activities and Glucose Intolerance in Rats. Yoshitsugu R, Kikuchi K, Iwaya H, Fujii N, Hori S, Lee DG, Ishizuka S. J Nutr Sci Vitaminol (Tokyo); 2019 Aug 06; 65(1):45-51. PubMed ID: 30814411 [Abstract] [Full Text] [Related]
16. Increased bile acids in enterohepatic circulation by short-term calorie restriction in male mice. Fu ZD, Klaassen CD. Toxicol Appl Pharmacol; 2013 Dec 15; 273(3):680-90. PubMed ID: 24183703 [Abstract] [Full Text] [Related]
17. Flaxseed meal and oat hulls supplementation: impact on dietary fiber digestibility, and flows of fatty acids and bile acids in growing pigs. Ndou SP, Kiarie E, Ames N, Nyachoti CM. J Anim Sci; 2019 Jan 01; 97(1):291-301. PubMed ID: 30321359 [Abstract] [Full Text] [Related]
18. Cholestyramine and a fat-free diet lower apolipoprotein A-IV mRNA in jejunum and cholestyramine lowers apolipoprotein A-I mRNA in ileum of rats. Sonoyama K, Nishikawa H, Kiriyama S, Niki R. J Nutr; 1994 May 01; 124(5):621-7. PubMed ID: 8169653 [Abstract] [Full Text] [Related]
19. Activation of Constitutive Androstane Receptor (CAR) in Mice Results in Maintained Biliary Excretion of Bile Acids Despite a Marked Decrease of Bile Acids in Liver. Lickteig AJ, Csanaky IL, Pratt-Hyatt M, Klaassen CD. Toxicol Sci; 2016 Jun 01; 151(2):403-18. PubMed ID: 26984780 [Abstract] [Full Text] [Related]
20. Dietary Supplementation with Cholic Acid Reduces Insulin Secretion in Response to Intraperitoneal Glucose Administration in Rats. Yokoyama F, Yoshitsugu R, Yamazaki H, Ishizuka S. J Nutr Sci Vitaminol (Tokyo); 2024 Jun 01; 70(1):76-81. PubMed ID: 38417855 [Abstract] [Full Text] [Related] Page: [Next] [New Search]