These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
225 related items for PubMed ID: 34159720
1. Single Zinc Atoms Anchored on MOF-Derived N-Doped Carbon Shell Cooperated with Magnetic Core as an Ultrawideband Microwave Absorber. Huang M, Wang L, You W, Che R. Small; 2021 Jul; 17(30):e2101416. PubMed ID: 34159720 [Abstract] [Full Text] [Related]
2. Boosted Interfacial Polarization from Multishell TiO2 @Fe3 O4 @PPy Heterojunction for Enhanced Microwave Absorption. Ding J, Wang L, Zhao Y, Xing L, Yu X, Chen G, Zhang J, Che R. Small; 2019 Sep; 15(36):e1902885. PubMed ID: 31310052 [Abstract] [Full Text] [Related]
3. Space-Confined Synthesis of Core-Shell BaTiO3@Carbon Microspheres as a High-Performance Binary Dielectric System for Microwave Absorption. Cui L, Tian C, Tang L, Han X, Wang Y, Liu D, Xu P, Li C, Du Y. ACS Appl Mater Interfaces; 2019 Aug 28; 11(34):31182-31190. PubMed ID: 31368297 [Abstract] [Full Text] [Related]
4. MOF-Derived Ni1-xCox@Carbon with Tunable Nano-Microstructure as Lightweight and Highly Efficient Electromagnetic Wave Absorber. Wang L, Huang M, Yu X, You W, Zhang J, Liu X, Wang M, Che R. Nanomicro Lett; 2020 Jul 15; 12(1):150. PubMed ID: 34138180 [Abstract] [Full Text] [Related]
6. Facile Synthesis of Cobalt-Doped Porous Composites with Amorphous Carbon/Zn Shell for High-Performance Microwave Absorption. Wu Q, Jin H, Zhang B, Huo S, Yang S, Su X, Wang J. Nanomaterials (Basel); 2020 Feb 14; 10(2):. PubMed ID: 32075194 [Abstract] [Full Text] [Related]
7. Controlled formation of multiple core-shell structures in metal-organic frame materials for efficient microwave absorption. Jiang R, Wang Y, Wang J, He Q, Wu G. J Colloid Interface Sci; 2023 Oct 15; 648():25-36. PubMed ID: 37295367 [Abstract] [Full Text] [Related]
8. Confined Magnetic-Dielectric Balance Boosted Electromagnetic Wave Absorption. Wang L, Huang M, Qian X, Liu L, You W, Zhang J, Wang M, Che R. Small; 2021 Jul 15; 17(30):e2100970. PubMed ID: 34145736 [Abstract] [Full Text] [Related]
9. Hierarchical and Orderly Surface Conductive Networks in Yolk-Shell Fe3 O4 @C@Co/N-Doped C Microspheres for Enhanced Microwave Absorption. He P, Ma W, Xu J, Wang Y, Cui ZK, Wei J, Zuo P, Liu X, Zhuang Q. Small; 2023 Oct 15; 19(40):e2302961. PubMed ID: 37264718 [Abstract] [Full Text] [Related]
10. Facile fabrication of metal-organic framework derived Fe/Fe3O4/FeN/N-doped carbon composites coated with PPy for superior microwave absorption. Ma M, Bi Y, Jiao Z, Yue J, Liao Z, Wang Y, Ma Y, Huang W. J Colloid Interface Sci; 2022 Feb 15; 608(Pt 1):525-535. PubMed ID: 34626994 [Abstract] [Full Text] [Related]
11. Multidimension-Controllable Synthesis of MOF-Derived Co@N-Doped Carbon Composite with Magnetic-Dielectric Synergy toward Strong Microwave Absorption. Huang M, Wang L, Pei K, You W, Yu X, Wu Z, Che R. Small; 2020 Apr 15; 16(14):e2000158. PubMed ID: 32182407 [Abstract] [Full Text] [Related]
12. Facile construction of core-shell Carbon@CoNiO2 derived from yeast for broadband and high-efficiency microwave absorption. Lu Z, Ren F, Guo Z, Dai Z, Fu B, Zong Z, Zhang F, Jin Y, Chen Z, Ren P. J Colloid Interface Sci; 2022 Nov 15; 625():415-424. PubMed ID: 35724464 [Abstract] [Full Text] [Related]
13. Hierarchical Magnetic Network Constructed by CoFe Nanoparticles Suspended Within "Tubes on Rods" Matrix Toward Enhanced Microwave Absorption. Xu C, Wang L, Li X, Qian X, Wu Z, You W, Pei K, Qin G, Zeng Q, Yang Z, Jin C, Che R. Nanomicro Lett; 2021 Jan 04; 13(1):47. PubMed ID: 34138216 [Abstract] [Full Text] [Related]
14. Self-Templating Engineering of Hollow N-Doped Carbon Microspheres Anchored with Ternary FeCoNi Alloys for Low-Frequency Microwave Absorption. Li L, Ban Q, Song Y, Liu J, Qin Y, Zhang T, Kong J. Small; 2024 Dec 04; 20(50):e2406602. PubMed ID: 39344537 [Abstract] [Full Text] [Related]
15. Hierarchical Ti3 C2 Tx MXene/Carbon Nanotubes Hollow Microsphere with Confined Magnetic Nanospheres for Broadband Microwave Absorption. Zhang C, Wu Z, Xu C, Yang B, Wang L, You W, Che R. Small; 2022 Jan 04; 18(3):e2104380. PubMed ID: 34914181 [Abstract] [Full Text] [Related]
16. Construction of self-assembled bilayer core-shell V2O3 microspheres as absorber with superior microwave absorption performance. Zhao J, Wang H, Li Y, Wang Z, Fang C, Liu P. J Colloid Interface Sci; 2023 Jun 04; 639():68-77. PubMed ID: 36804794 [Abstract] [Full Text] [Related]
17. In-situ growth of core-shell ZnFe2O4 @ porous hollow carbon microspheres as an efficient microwave absorber. Chai L, Wang Y, Zhou N, Du Y, Zeng X, Zhou S, He Q, Wu G. J Colloid Interface Sci; 2021 Jan 01; 581(Pt B):475-484. PubMed ID: 32805668 [Abstract] [Full Text] [Related]
18. Metal-Organic Framework-Derived Core-Shell Nanospheres Anchored on Fe-Filled Carbon Nanotube Sponge for Strong Wideband Microwave Absorption. Hu Q, Yang R, Yang S, Huang W, Zeng Z, Gui X. ACS Appl Mater Interfaces; 2022 Mar 02; 14(8):10577-10587. PubMed ID: 35188369 [Abstract] [Full Text] [Related]
19. Bimetal-doped core-shell carbon derived from nickel-cobalt dual-ligand metal-organic framework for adjustable strong microwave absorption. Lin K, Wu L, Wu T, Yuan C, Jia X, Yang X, Sui G. J Colloid Interface Sci; 2022 Dec 02; 627():90-101. PubMed ID: 35842969 [Abstract] [Full Text] [Related]
20. The effect of ZnCl2 activation on microwave absorbing performance in walnut shell-derived nano-porous carbon. Wang L, Zhou P, Guo Y, Zhang J, Qiu X, Guan Y, Yu M, Zhu H, Zhang Q. RSC Adv; 2019 Mar 22; 9(17):9718-9728. PubMed ID: 35520714 [Abstract] [Full Text] [Related] Page: [Next] [New Search]