These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


338 related items for PubMed ID: 3416879

  • 1. Characterization of the inducible polyamine transporter in bovine lymphocytes.
    Kakinuma Y, Hoshino K, Igarashi K.
    Eur J Biochem; 1988 Sep 15; 176(2):409-14. PubMed ID: 3416879
    [Abstract] [Full Text] [Related]

  • 2. The effect of acylated polyamine derivatives on polyamine uptake mechanism, cell growth, and polyamine pools in Escherichia coli, and the pursuit of structure/activity relationships.
    Karahalios P, Mamos P, Vynios DH, Papaioannou D, Kalpaxis DL.
    Eur J Biochem; 1998 Feb 01; 251(3):998-1004. PubMed ID: 9490078
    [Abstract] [Full Text] [Related]

  • 3. Apparently unidirectional polyamine transport by proton motive force in polyamine-deficient Escherichia coli.
    Kashiwagi K, Kobayashi H, Igarashi K.
    J Bacteriol; 1986 Mar 01; 165(3):972-7. PubMed ID: 3005244
    [Abstract] [Full Text] [Related]

  • 4. Inhibition of the synthesis of polyamines and DNA in activated lymphocytes by a combination of alpha-methylornithine and methylglyoxal bis(guanylhydrazone).
    Morris DR, Jorstad CM, Seyfried CE.
    Cancer Res; 1977 Sep 01; 37(9):3169-72. PubMed ID: 884669
    [Abstract] [Full Text] [Related]

  • 5. Characterization of a COS cell line deficient in polyamine transport.
    Hyvönen T, Seiler N, Persson L.
    Biochim Biophys Acta; 1994 Apr 28; 1221(3):279-85. PubMed ID: 8167149
    [Abstract] [Full Text] [Related]

  • 6. Increased cellular levels of spermidine or spermine are required for optimal DNA synthesis in lymphocytes activated by concanavalin A.
    Fillingame RH, Jorstad CM, Morris DR.
    Proc Natl Acad Sci U S A; 1975 Oct 28; 72(10):4042-5. PubMed ID: 1060087
    [Abstract] [Full Text] [Related]

  • 7. Cellular polyamine depletion reduces DNA synthesis in isolated lymphocyte nuclei.
    Knutson JC, Morris DR.
    Biochim Biophys Acta; 1978 Sep 27; 520(2):291-301. PubMed ID: 708738
    [Abstract] [Full Text] [Related]

  • 8. Relative abilities of bis(ethyl) derivatives of putrescine, spermidine, and spermine to regulate polyamine biosynthesis and inhibit L1210 leukemia cell growth.
    Porter CW, McManis J, Casero RA, Bergeron RJ.
    Cancer Res; 1987 Jun 01; 47(11):2821-5. PubMed ID: 3567905
    [Abstract] [Full Text] [Related]

  • 9. Suppression of the formation of polyamines and macromolecules by DL-alpha-difluoromethylornithine and methylglyoxal bis(guanylhydrazone) in phytohaemagglutinin-activated human lymphocytes.
    Hölttä E, Jänne J, Hovi T.
    Biochem J; 1979 Jan 15; 178(1):109-17. PubMed ID: 435270
    [Abstract] [Full Text] [Related]

  • 10. The involvement of polyamines in the proliferation of cultured retinal pigment epithelial cells.
    Yanagihara N, Moriwaki M, Shiraki K, Miki T, Otani S.
    Invest Ophthalmol Vis Sci; 1996 Sep 15; 37(10):1975-83. PubMed ID: 8814137
    [Abstract] [Full Text] [Related]

  • 11. A polyamine-sensitive mutant of Aspergillus nidulans.
    Spathas DH, Clutterbuck AJ, Pateman JA.
    J Gen Microbiol; 1983 Jun 15; 129(6):1865-71. PubMed ID: 6355384
    [Abstract] [Full Text] [Related]

  • 12. Comparison of specificity of inhibition of polyamine synthesis in bovine lymphocytes by ethylglyoxal bis(guanylhydrazone) and methylglyoxal bis(guanylhydrazone).
    Igarashi K, Porter CW, Morris DR.
    Cancer Res; 1984 Nov 15; 44(11):5326-31. PubMed ID: 6488187
    [Abstract] [Full Text] [Related]

  • 13. Dicyclohexylamine effects on HTC cell polyamine content and ornithine decarboxylase activity.
    Mitchell JL, Mahan DW, McCann PP, Qasba P.
    Biochim Biophys Acta; 1985 Jul 05; 840(3):309-16. PubMed ID: 4005290
    [Abstract] [Full Text] [Related]

  • 14. Effect of bis(benzyl)polyamine derivatives on polyamine transport and survival of Brugia pahangi.
    Müller S, Lüchow A, McCann PP, Walter RD.
    Parasitol Res; 1991 Jul 05; 77(7):612-5. PubMed ID: 1792233
    [Abstract] [Full Text] [Related]

  • 15. Effects of the S-adenosylmethionine decarboxylase inhibitor, 5'-([(Z)-4-amino-2-butenyl]methylamino)-5'-deoxyadenosine, on cell growth and polyamine metabolism and transport in Chinese hamster ovary cell cultures.
    Byers TL, Wechter RS, Hu RH, Pegg AE.
    Biochem J; 1994 Oct 01; 303 ( Pt 1)(Pt 1):89-96. PubMed ID: 7945270
    [Abstract] [Full Text] [Related]

  • 16. Difluoromethylornithine and ethylglyoxal bis(guanylhydrazone) as inhibitors of human renal carcinoma cell proliferation and polyamine metabolism.
    Sjöholm A, Larsson R, Nygren P.
    Anticancer Res; 1993 Oct 01; 13(4):979-83. PubMed ID: 8352568
    [Abstract] [Full Text] [Related]

  • 17. Differential effect of alpha-difluoromethylornithine on the in vivo uptake of 14C-labeled polyamines and methylglyoxal bis(guanylhydrazone) by a rat prostate-derived tumor.
    Heston WD, Kadmon D, Covey DF, Fair WR.
    Cancer Res; 1984 Mar 01; 44(3):1034-40. PubMed ID: 6420052
    [Abstract] [Full Text] [Related]

  • 18. 2,2'-Dithiobis(N-ethyl-spermine-5-carboxamide) is a high affinity, membrane-impermeant antagonist of the mammalian polyamine transport system.
    Huber M, Pelletier JG, Torossian K, Dionne P, Gamache I, Charest-Gaudreault R, Audette M, Poulin R.
    J Biol Chem; 1996 Nov 01; 271(44):27556-63. PubMed ID: 8910341
    [Abstract] [Full Text] [Related]

  • 19. Paraquat is not accumulated in B16 tumor cells by the polyamine transport system.
    Minchin RF, Martin RL, Ilett KF.
    Life Sci; 1989 Nov 01; 45(1):63-9. PubMed ID: 2501609
    [Abstract] [Full Text] [Related]

  • 20. Regulation of the Na(+)-dependent and the Na(+)-independent polyamine transporters in renal epithelial cells (LLC-PK1).
    Parys JB, De Smedt H, Van Den Bosch L, Geuns J, Borghgraef R.
    J Cell Physiol; 1990 Sep 01; 144(3):365-75. PubMed ID: 2118145
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.