These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Spatiotemporal continuous estimates of PM2.5 concentrations in China, 2000-2016: A machine learning method with inputs from satellites, chemical transport model, and ground observations. Xue T, Zheng Y, Tong D, Zheng B, Li X, Zhu T, Zhang Q. Environ Int; 2019 Feb; 123():345-357. PubMed ID: 30562706 [Abstract] [Full Text] [Related]
5. Spatiotemporally continuous estimates of daily 1-km PM2.5 concentrations and their long-term exposure in China from 2000 to 2020. He Q, Ye T, Wang W, Luo M, Song Y, Zhang M. J Environ Manage; 2023 Sep 15; 342():118145. PubMed ID: 37210817 [Abstract] [Full Text] [Related]
6. Predicting monthly high-resolution PM2.5 concentrations with random forest model in the North China Plain. Huang K, Xiao Q, Meng X, Geng G, Wang Y, Lyapustin A, Gu D, Liu Y. Environ Pollut; 2018 Nov 15; 242(Pt A):675-683. PubMed ID: 30025341 [Abstract] [Full Text] [Related]
7. A nonparametric approach to filling gaps in satellite-retrieved aerosol optical depth for estimating ambient PM2.5 levels. Zhang R, Di B, Luo Y, Deng X, Grieneisen ML, Wang Z, Yao G, Zhan Y. Environ Pollut; 2018 Dec 15; 243(Pt B):998-1007. PubMed ID: 30248607 [Abstract] [Full Text] [Related]
9. Satellite-based high-resolution PM2.5 estimation over the Beijing-Tianjin-Hebei region of China using an improved geographically and temporally weighted regression model. He Q, Huang B. Environ Pollut; 2018 May 15; 236():1027-1037. PubMed ID: 29455919 [Abstract] [Full Text] [Related]
10. Incorporating long-term satellite-based aerosol optical depth, localized land use data, and meteorological variables to estimate ground-level PM2.5 concentrations in Taiwan from 2005 to 2015. Jung CR, Hwang BF, Chen WT. Environ Pollut; 2018 Jun 15; 237():1000-1010. PubMed ID: 29157969 [Abstract] [Full Text] [Related]
12. Global Estimates and Long-Term Trends of Fine Particulate Matter Concentrations (1998-2018). Hammer MS, van Donkelaar A, Li C, Lyapustin A, Sayer AM, Hsu NC, Levy RC, Garay MJ, Kalashnikova OV, Kahn RA, Brauer M, Apte JS, Henze DK, Zhang L, Zhang Q, Ford B, Pierce JR, Martin RV. Environ Sci Technol; 2020 Jul 07; 54(13):7879-7890. PubMed ID: 32491847 [Abstract] [Full Text] [Related]
13. Satellite-Based Spatiotemporal Trends in PM2.5 Concentrations: China, 2004-2013. Ma Z, Hu X, Sayer AM, Levy R, Zhang Q, Xue Y, Tong S, Bi J, Huang L, Liu Y. Environ Health Perspect; 2016 Feb 07; 124(2):184-92. PubMed ID: 26220256 [Abstract] [Full Text] [Related]
14. Estimating national-scale ground-level PM25 concentration in China using geographically weighted regression based on MODIS and MISR AOD. You W, Zang Z, Zhang L, Li Y, Wang W. Environ Sci Pollut Res Int; 2016 May 07; 23(9):8327-38. PubMed ID: 26780051 [Abstract] [Full Text] [Related]
15. Ground PM2.5 prediction using imputed MAIAC AOD with uncertainty quantification. Pu Q, Yoo EH. Environ Pollut; 2021 Apr 01; 274():116574. PubMed ID: 33529896 [Abstract] [Full Text] [Related]
16. A gap-filling hybrid approach for hourly PM2.5 prediction at high spatial resolution from multi-sourced AOD data. Pu Q, Yoo EH. Environ Pollut; 2022 Dec 15; 315():120419. PubMed ID: 36272606 [Abstract] [Full Text] [Related]
17. Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: development and application. van Donkelaar A, Martin RV, Brauer M, Kahn R, Levy R, Verduzco C, Villeneuve PJ. Environ Health Perspect; 2010 Jun 15; 118(6):847-55. PubMed ID: 20519161 [Abstract] [Full Text] [Related]
18. Construction of a virtual PM2.5 observation network in China based on high-density surface meteorological observations using the Extreme Gradient Boosting model. Gui K, Che H, Zeng Z, Wang Y, Zhai S, Wang Z, Luo M, Zhang L, Liao T, Zhao H, Li L, Zheng Y, Zhang X. Environ Int; 2020 Aug 15; 141():105801. PubMed ID: 32480141 [Abstract] [Full Text] [Related]
19. Estimating monthly PM2.5 concentrations from satellite remote sensing data, meteorological variables, and land use data using ensemble statistical modeling and a random forest approach. Chen CC, Wang YR, Yeh HY, Lin TH, Huang CS, Wu CF. Environ Pollut; 2021 Dec 15; 291():118159. PubMed ID: 34543952 [Abstract] [Full Text] [Related]
20. The comparison of AOD-based and non-AOD prediction models for daily PM2.5 estimation in Guangdong province, China with poor AOD coverage. Chen G, Li Y, Zhou Y, Shi C, Guo Y, Liu Y. Environ Res; 2021 Apr 15; 195():110735. PubMed ID: 33460631 [Abstract] [Full Text] [Related] Page: [Next] [New Search]