These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


162 related items for PubMed ID: 3417774

  • 1. Posttranscriptional control of embryonic rat skeletal muscle protein synthesis. Control at the level of translation by endogenous RNA.
    Vanderburg CR, Nathanson MA.
    J Cell Biol; 1988 Sep; 107(3):1085-98. PubMed ID: 3417774
    [Abstract] [Full Text] [Related]

  • 2. A ribonuclease-resistant cytoplasmic 10 S ribonucleoprotein of chick embryonic muscle. A potent inhibitor of cell-free protein synthesis.
    Sarkar S, Mukherjee AK, Guha C.
    J Biol Chem; 1981 May 25; 256(10):5077-86. PubMed ID: 6112223
    [Abstract] [Full Text] [Related]

  • 3. Transcriptional-translational regulation of muscle-specific protein synthesis and its relationship to chondrogenic stimuli.
    Nathanson MA, Bush EW, Vanderburg C.
    J Biol Chem; 1986 Jan 25; 261(3):1477-86. PubMed ID: 2868001
    [Abstract] [Full Text] [Related]

  • 4. Biochemical changes in progressive muscular dystrophy. XIV. Skeletal muscle myosin mRNA translatability in dystrophic mice.
    Srivastava US, Sugden EA, Majumdar PK, Thakur ML, Bhatnagar GM.
    Biochem Cell Biol; 1987 Sep 25; 65(9):833-41. PubMed ID: 2449899
    [Abstract] [Full Text] [Related]

  • 5. The majority of calf muscle cell messenger RNAs contain poly(A).
    Whalen RG, Gros F.
    Biochim Biophys Acta; 1978 Jul 24; 519(2):372-82. PubMed ID: 667071
    [Abstract] [Full Text] [Related]

  • 6. Cell-free translational analysis of messenger ribonucleic acid coding for vitamin D-dependent rat renal calcium-binding protein.
    Pansini AR, Christakos S.
    Endocrinology; 1985 Oct 24; 117(4):1652-60. PubMed ID: 2411531
    [Abstract] [Full Text] [Related]

  • 7. The translational inhibitory 10 S cytoplasmic ribonucleoprotein of chicken embryonic muscle is distinct from messenger ribonucleoproteins.
    Mukherjee AK, Guha C, Sarkar S.
    FEBS Lett; 1981 May 05; 127(1):133-8. PubMed ID: 6113988
    [No Abstract] [Full Text] [Related]

  • 8. The cytoplasmic 4 S translation inhibitory RNA species of chick embryonic muscle. Effect on mRNA binding to 43 S initiation complex.
    Winkler MM, Lashbrook C, Hershey JW, Mukherjee AK, Sarkar S.
    J Biol Chem; 1983 Dec 25; 258(24):15141-5. PubMed ID: 6558076
    [Abstract] [Full Text] [Related]

  • 9. Most myosin heavy chain mRNA in L6E9 rat myotubes has a short poly(A) tail.
    Benoff S, Nadal-Ginard B.
    Proc Natl Acad Sci U S A; 1979 Apr 25; 76(4):1853-7. PubMed ID: 287026
    [Abstract] [Full Text] [Related]

  • 10. Biosynthesis of tropomyosin and troponin during development of the chicken skeletal muscle.
    Matsuda R, Tomino S.
    J Biochem; 1981 Sep 25; 90(3):815-21. PubMed ID: 6796569
    [Abstract] [Full Text] [Related]

  • 11. A novel protein, p19/6.8, specific for cardiac and slow skeletal muscle.
    Kluxen FW.
    FEBS Lett; 1988 Mar 28; 230(1-2):191-4. PubMed ID: 3350150
    [Abstract] [Full Text] [Related]

  • 12. Studies concerning the mechanism by which translational-control RNA regulates protein synthesis in embryonic muscle.
    Heywood SM, Kennedy DS, Bester AJ.
    Eur J Biochem; 1975 Oct 15; 58(2):587-93. PubMed ID: 1237405
    [Abstract] [Full Text] [Related]

  • 13. Developmental changes in the composition of polyadenylated RNA isolated from free and membrane-bound polyribosomes of the rat forebrain, analysed by translation in vitro.
    Hall C, Lim L.
    Biochem J; 1981 Apr 15; 196(1):327-36. PubMed ID: 6171267
    [Abstract] [Full Text] [Related]

  • 14. Encapsulation of "core" eIF3, regulatory components of eIF3 and mRNA into liposomes, and their subsequent uptake into myogenic cells in culture.
    O'Loughlin J, Lehr L, Havaranis A, Heywood SM.
    J Cell Biol; 1981 Jul 15; 90(1):160-8. PubMed ID: 7251672
    [Abstract] [Full Text] [Related]

  • 15. Attachment of mRNA to the cytoskeletal framework and translational control of gene expression in rat L6 muscle cells.
    Bag J, Pramanik S.
    Biochem Cell Biol; 1987 Jun 15; 65(6):565-75. PubMed ID: 3426834
    [Abstract] [Full Text] [Related]

  • 16. Association of messenger RNA with the cytoskeletal framework in rat L6 myogenic cells.
    Pramanik SK, Walsh RW, Bag J.
    Eur J Biochem; 1986 Oct 15; 160(2):221-30. PubMed ID: 3769924
    [Abstract] [Full Text] [Related]

  • 17. Glucocorticoids oppose translational control by leucine in skeletal muscle.
    Shah OJ, Anthony JC, Kimball SR, Jefferson LS.
    Am J Physiol Endocrinol Metab; 2000 Nov 15; 279(5):E1185-90. PubMed ID: 11052975
    [Abstract] [Full Text] [Related]

  • 18. Nonselective inhibition of messenger RNA translation by highly purified low molecular weight RNA species from ribosomal salt wash of chick embryonic muscle.
    Mukherjee AK, Sarkar S.
    Mol Biol Rep; 1981 Nov 30; 8(1):51-6. PubMed ID: 6173743
    [Abstract] [Full Text] [Related]

  • 19. Three types of muscle-specific gene expression in fusion-blocked rat skeletal muscle cells: translational control in EGTA-treated cells.
    Endo T, Nadal-Ginard B.
    Cell; 1987 May 22; 49(4):515-26. PubMed ID: 3105893
    [Abstract] [Full Text] [Related]

  • 20. Control of gene expression in muscle development.
    Heywood SM, Thibault MC, Siegel E.
    Cell Muscle Motil; 1983 May 22; 3():157-93. PubMed ID: 6367952
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.