These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Abiotic Mimic of Endogenous Tissue Inhibitors of Metalloproteinases: Engineering Synthetic Polymer Nanoparticles for Use as a Broad-Spectrum Metalloproteinase Inhibitor. Nakamoto M, Zhao D, Benice OR, Lee SH, Shea KJ. J Am Chem Soc; 2020 Feb 05; 142(5):2338-2345. PubMed ID: 31918547 [Abstract] [Full Text] [Related]
3. Diversity of metalloproteinases in Bothrops neuwiedi snake venom transcripts: evidences for recombination between different classes of SVMPs. Moura-da-Silva AM, Furlan MS, Caporrino MC, Grego KF, Portes-Junior JA, Clissa PB, Valente RH, Magalhães GS. BMC Genet; 2011 Nov 01; 12():94. PubMed ID: 22044657 [Abstract] [Full Text] [Related]
4. Structural features of the reprolysin atrolysin C and tissue inhibitors of metalloproteinases (TIMPs) interaction. Pinto AF, Terra RM, Guimarães JA, Kashiwagi M, Nagase H, Serrano SM, Fox JW. Biochem Biophys Res Commun; 2006 Sep 01; 347(3):641-8. PubMed ID: 16842758 [Abstract] [Full Text] [Related]
8. Insights into the Mechanisms Involved in Strong Hemorrhage and Dermonecrosis Induced by Atroxlysin-Ia, a PI-Class Snake Venom Metalloproteinase. Freitas-de-Sousa LA, Colombini M, Lopes-Ferreira M, Serrano SMT, Moura-da-Silva AM. Toxins (Basel); 2017 Aug 02; 9(8):. PubMed ID: 28767072 [Abstract] [Full Text] [Related]
9. Processing of Snake Venom Metalloproteinases: Generation of Toxin Diversity and Enzyme Inactivation. Moura-da-Silva AM, Almeida MT, Portes-Junior JA, Nicolau CA, Gomes-Neto F, Valente RH. Toxins (Basel); 2016 Jun 09; 8(6):. PubMed ID: 27294958 [Abstract] [Full Text] [Related]
14. Free energy calculations on snake venom metalloproteinase BaP1. Lingott T, Merfort I, Steinbrecher T. Chem Biol Drug Des; 2012 Jun 09; 79(6):990-1000. PubMed ID: 22385614 [Abstract] [Full Text] [Related]
16. Hemorrhagic and procoagulant P-III snake venom metalloproteinases differ in their binding to the microvasculature of mouse cremaster muscle. Herrera C, Escalante T, Rucavado A, Gutiérrez JM. Toxicon; 2020 Apr 30; 178():1-3. PubMed ID: 32094098 [Abstract] [Full Text] [Related]
17. Natural protease inhibitors to hemorrhagins in snake venoms and their potential use in medicine. Pérez JC, Sánchez EE. Toxicon; 1999 May 30; 37(5):703-28. PubMed ID: 10219984 [Abstract] [Full Text] [Related]
18. P-I snake venom metalloproteinase is able to activate the complement system by direct cleavage of central components of the cascade. Pidde-Queiroz G, Magnoli FC, Portaro FC, Serrano SM, Lopes AS, Paes Leme AF, van den Berg CW, Tambourgi DV. PLoS Negl Trop Dis; 2013 May 30; 7(10):e2519. PubMed ID: 24205428 [Abstract] [Full Text] [Related]
19. A Comprehensive View of the Structural and Functional Alterations of Extracellular Matrix by Snake Venom Metalloproteinases (SVMPs): Novel Perspectives on the Pathophysiology of Envenoming. Gutiérrez JM, Escalante T, Rucavado A, Herrera C, Fox JW. Toxins (Basel); 2016 Oct 22; 8(10):. PubMed ID: 27782073 [Abstract] [Full Text] [Related]
20. Effects of PI and PIII Snake Venom Haemorrhagic Metalloproteinases on the Microvasculature: A Confocal Microscopy Study on the Mouse Cremaster Muscle. Herrera C, Voisin MB, Escalante T, Rucavado A, Nourshargh S, Gutiérrez JM. PLoS One; 2016 Oct 22; 11(12):e0168643. PubMed ID: 27992592 [Abstract] [Full Text] [Related] Page: [Next] [New Search]