These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
233 related items for PubMed ID: 34198118
1. Spiky yolk-shell AuAg bimetallic nanorods with uniform interior gap for the SERS detection of thiram residues in fruit juice. Zhu J, Zhang S, Weng GJ, Li JJ, Zhao JW. Spectrochim Acta A Mol Biomol Spectrosc; 2021 Dec 05; 262():120108. PubMed ID: 34198118 [Abstract] [Full Text] [Related]
2. The morphology regulation and plasmonic spectral properties of Au@AuAg yolk-shell nanorods with controlled interior gap. Zhu J, Zhang S, Weng GJ, Li JJ, Zhao JW. Spectrochim Acta A Mol Biomol Spectrosc; 2020 Aug 05; 236():118343. PubMed ID: 32302959 [Abstract] [Full Text] [Related]
3. Synthesis and SERS activity of super-multibranched AuAg nanostructure via silver coating-induced aggregation of nanostars. Li JJ, Wu C, Zhao J, Weng GJ, Zhu J, Zhao JW. Spectrochim Acta A Mol Biomol Spectrosc; 2018 Nov 05; 204():380-387. PubMed ID: 29960240 [Abstract] [Full Text] [Related]
4. Construction of pure worm-like AuAg nanochains for ultrasensitive SERS detection of pesticide residues on apple surfaces. Jiao A, Dong X, Zhang H, Xu L, Tian Y, Liu X, Chen M. Spectrochim Acta A Mol Biomol Spectrosc; 2019 Feb 15; 209():241-247. PubMed ID: 30414572 [Abstract] [Full Text] [Related]
5. Facile synthesis of Au@Ag core-shell nanorod with bimetallic synergistic effect for SERS detection of thiabendazole in fruit juice. Chen Z, Sun Y, Shi J, Zhang W, Zhang X, Huang X, Zou X, Li Z, Wei R. Food Chem; 2022 Feb 15; 370():131276. PubMed ID: 34662790 [Abstract] [Full Text] [Related]
7. Ultrasensitive detection of thiram based on surface-enhanced Raman scattering via Au@Ag@Ag core/shell/shell bimetallic nanorods. Wang Y, Liu S, Hu Y, Fu C, Chen W. Analyst; 2023 Oct 23; 148(21):5435-5444. PubMed ID: 37750326 [Abstract] [Full Text] [Related]
8. Controlled Spread of a Ag Layer from the Core to the Tip along the Branches of AuAg Nanostars for Improved SERS Detection of Okadaic Acid in Shellfish. Li YL, Zhu J, Weng GJ, Li JJ, Zhao JW. ACS Sens; 2024 Aug 23; 9(8):4295-4304. PubMed ID: 39143674 [Abstract] [Full Text] [Related]
9. Surface enhanced Raman spectroscopic studies on magnetic Fe3O4@AuAg alloy core-shell nanoparticles. Sun HL, Xu MM, Guo QH, Yuan YX, Shen LM, Gu RA, Yao JL. Spectrochim Acta A Mol Biomol Spectrosc; 2013 Oct 23; 114():579-85. PubMed ID: 23800776 [Abstract] [Full Text] [Related]
10. Core size optimized silver coated gold nanoparticles for rapid screening of tricyclazole and thiram residues in pear extracts using SERS. Hussain N, Pu H, Sun DW. Food Chem; 2021 Jul 15; 350():129025. PubMed ID: 33609938 [Abstract] [Full Text] [Related]
11. Fabrication of flexible SERS substrate based on Au nanostars and PDMS for sensitive detection of Thiram residue in apple juice. Zhang Y, Wang Y, Liu A, Liu S. Spectrochim Acta A Mol Biomol Spectrosc; 2023 Sep 05; 297():122721. PubMed ID: 37054572 [Abstract] [Full Text] [Related]
12. Tunable and Linker Free Nanogaps in Core-Shell Plasmonic Nanorods for Selective and Quantitative Detection of Circulating Tumor Cells by SERS. Zhang Y, Yang P, Habeeb Muhammed MA, Alsaiari SK, Moosa B, Almalik A, Kumar A, Ringe E, Khashab NM. ACS Appl Mater Interfaces; 2017 Nov 01; 9(43):37597-37605. PubMed ID: 28990755 [Abstract] [Full Text] [Related]
13. An ultrafast electrochemical synthesis of Au@Ag core-shell nanoflowers as a SERS substrate for thiram detection in milk and juice. Wang J, Luo Z, Lin X. Food Chem; 2023 Feb 15; 402():134433. PubMed ID: 36303364 [Abstract] [Full Text] [Related]
14. Synthesis of polyhedral gold nanostars as surface-enhanced Raman spectroscopy substrates for measurement of thiram in peach juice. Sun L, Yu Z, Lin M. Analyst; 2019 Aug 05; 144(16):4820-4825. PubMed ID: 31282496 [Abstract] [Full Text] [Related]
15. Two-dimensional self-assembled Au-Ag core-shell nanorods nanoarray for sensitive detection of thiram in apple using surface-enhanced Raman spectroscopy. Pu H, Huang Z, Xu F, Sun DW. Food Chem; 2021 May 01; 343():128548. PubMed ID: 33221103 [Abstract] [Full Text] [Related]
16. Determination of thiram in fruit juices using a bacterial cellulose nanocrystal-based SERS substrate. Xiao L, Hua MZ, Lu X. Int J Biol Macromol; 2024 Jan 01; 255():128207. PubMed ID: 37979753 [Abstract] [Full Text] [Related]
17. Nanofibrillar cellulose/Au@Ag nanoparticle nanocomposite as a SERS substrate for detection of paraquat and thiram in lettuce. Asgari S, Sun L, Lin J, Weng Z, Wu G, Zhang Y, Lin M. Mikrochim Acta; 2020 Jun 16; 187(7):390. PubMed ID: 32548791 [Abstract] [Full Text] [Related]
18. Rapid and ultrasensitive detection of thiram and carbaryl pesticide residues in fruit juices using SERS coupled with the chemometrics technique. Adhikari S, Joshi R, Joshi R, Kim M, Jang Y, Tufa LT, Gicha BB, Lee J, Lee D, Cho BK. Food Chem; 2024 Nov 01; 457():140486. PubMed ID: 39032478 [Abstract] [Full Text] [Related]
19. Shape controlled synthesis of concave octahedral Au@AuAg nanoparticles to improve their surface-enhanced Raman scattering performance. Bi C, Song Y, Zhao H, Liu G. RSC Adv; 2022 Jun 29; 12(30):19571-19578. PubMed ID: 35865565 [Abstract] [Full Text] [Related]
20. Localized surface plasmon resonance and surface enhanced Raman scattering responses of Au@Ag core-shell nanorods with different thickness of Ag shell. Ma Y, Zhou J, Zou W, Jia Z, Petti L, Mormile P. J Nanosci Nanotechnol; 2014 Jun 29; 14(6):4245-50. PubMed ID: 24738378 [Abstract] [Full Text] [Related] Page: [Next] [New Search]