These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


140 related items for PubMed ID: 3420611

  • 1. Physiologically based pharmacokinetic modeling with methylchloroform: implications for interspecies, high dose/low dose, and dose route extrapolations.
    Reitz RH, McDougal JN, Himmelstein MW, Nolan RJ, Schumann AM.
    Toxicol Appl Pharmacol; 1988 Sep 15; 95(2):185-99. PubMed ID: 3420611
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Utility of real time breath analysis and physiologically based pharmacokinetic modeling to determine the percutaneous absorption of methyl chloroform in rats and humans.
    Poet TS, Thrall KD, Corley RA, Hui X, Edwards JA, Weitz KK, Maibach HI, Wester RC.
    Toxicol Sci; 2000 Mar 15; 54(1):42-51. PubMed ID: 10746930
    [Abstract] [Full Text] [Related]

  • 5. Pharmacokinetics for regulatory risk analysis: the case of 1,1,1-trichloroethane (methyl chloroform).
    Bogen KT, Hall LC.
    Regul Toxicol Pharmacol; 1989 Aug 15; 10(1):26-50. PubMed ID: 2672126
    [Abstract] [Full Text] [Related]

  • 6. Assessing interaction thresholds for trichloroethylene in combination with tetrachloroethylene and 1,1,1-trichloroethane using gas uptake studies and PBPK modeling.
    Dobrev ID, Andersen ME, Yang RS.
    Arch Toxicol; 2001 May 15; 75(3):134-44. PubMed ID: 11409535
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. The uptake and elimination of 1,1,1-trichloroethane during and following inhalation exposures in rats.
    Dallas CE, Ramanathan R, Muralidhara S, Gallo JM, Bruckner JV.
    Toxicol Appl Pharmacol; 1989 May 15; 98(3):385-97. PubMed ID: 2718170
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Physiologically based pharmacokinetic modeling of the lactating rat and nursing pup: a multiroute exposure model for trichloroethylene and its metabolite, trichloroacetic acid.
    Fisher JW, Whittaker TA, Taylor DH, Clewell HJ, Andersen ME.
    Toxicol Appl Pharmacol; 1990 Mar 01; 102(3):497-513. PubMed ID: 2315918
    [Abstract] [Full Text] [Related]

  • 14. Final report on the safety assessment of Trichloroethane.
    Int J Toxicol; 2008 Mar 01; 27 Suppl 4():107-38. PubMed ID: 19101834
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Assessing the dose-dependency of allometric scaling performance using physiologically based pharmacokinetic modeling.
    Kirman CR, Sweeney LM, Meek ME, Gargas ML.
    Regul Toxicol Pharmacol; 2003 Dec 01; 38(3):345-67. PubMed ID: 14623485
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Toxicology and carcinogenesis studies of acrylamide (CASRN 79-06-1) in F344/N rats and B6C3F1 mice (feed and drinking water studies).
    National Toxicology Program.
    Natl Toxicol Program Tech Rep Ser; 2012 Jul 01; (575):1-234. PubMed ID: 22906972
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.