These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
113 related items for PubMed ID: 34217110
21. Interaction of loratadine with serum albumins studied by fluorescence quenching method. Zhou B, Qi ZD, Xiao Q, Dong JX, Zhang YZ, Liu Y. J Biochem Biophys Methods; 2007 Aug 01; 70(5):743-7. PubMed ID: 17482267 [Abstract] [Full Text] [Related]
22. Computational investigation of inhibitory mechanism of flavonoids as bovine serum albumin anti-glycation agents. Johari A, Moosavi-Movahedi AA, Amanlou M. Daru; 2014 Dec 11; 22(1):79. PubMed ID: 25498599 [Abstract] [Full Text] [Related]
23. Investigation of the interaction of naringin palmitate with bovine serum albumin: spectroscopic analysis and molecular docking. Zhang X, Li L, Xu Z, Liang Z, Su J, Huang J, Li B. PLoS One; 2013 Dec 11; 8(3):e59106. PubMed ID: 23527100 [Abstract] [Full Text] [Related]
24. Investigation of binding properties of two ethidium derivatives with serum albumins: spectral and computational approach. Akbay N, Taskin Tok T, Seferoğlu Z, Gökoğlu E. J Biomol Struct Dyn; 2018 Sep 11; 36(12):3114-3121. PubMed ID: 28911252 [Abstract] [Full Text] [Related]
25. Identification differential behavior of Gd@C82(OH)22 upon interaction with serum albumin using spectroscopic analysis. Liu X, Ying X, Li Y, Yang H, Hao W, Yu M. Spectrochim Acta A Mol Biomol Spectrosc; 2018 Oct 05; 203():383-396. PubMed ID: 29894950 [Abstract] [Full Text] [Related]
26. Exploring the interactions of a Tb(III)-quercetin complex with serum albumins (HSA and BSA): spectroscopic and molecular docking studies. Shaghaghi M, Rashtbari S, Vejdani S, Dehghan G, Jouyban A, Yekta R. Luminescence; 2020 Jun 05; 35(4):512-524. PubMed ID: 31883206 [Abstract] [Full Text] [Related]
27. The Inhibition Mechanisms of Three Structurally Different Salvianolic Acids on the Non-Enzymatic Glycation of Bovine Serum Albumin. Feng G, Yan Y, Wang M, Gao Z, Zhao Y, Peng X. Plant Foods Hum Nutr; 2024 Jun 05; 79(2):526-530. PubMed ID: 38530542 [Abstract] [Full Text] [Related]
28. Interactions between hydroxylated polycyclic aromatic hydrocarbons and serum albumins: multispectral and molecular docking analyses. Li MS, Zhang J, Zhu YX, Zhang Y. Luminescence; 2022 Nov 05; 37(11):1972-1981. PubMed ID: 36098937 [Abstract] [Full Text] [Related]
29. Study on the interaction of Co (III) DiAmsar with serum albumins: spectroscopic and molecular docking methods. Farahani BV, Bardajee GR, Rajabi FH, Hooshyar Z. Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan 25; 135():410-6. PubMed ID: 25105263 [Abstract] [Full Text] [Related]
30. Interactions of tannic acid and its derivatives (ellagic and gallic acid) with calf thymus DNA and bovine serum albumin using spectroscopic method. Labieniec M, Gabryelak T. J Photochem Photobiol B; 2006 Jan 02; 82(1):72-8. PubMed ID: 16263304 [Abstract] [Full Text] [Related]
31. Study on the interaction of fisetholz with BSA/HSA by multi-spectroscopic, cyclic voltammetric, and molecular docking technique. Wu J, Bi SY, Sun XY, Zhao R, Wang JH, Zhou HF. J Biomol Struct Dyn; 2019 Aug 02; 37(13):3496-3505. PubMed ID: 30176766 [Abstract] [Full Text] [Related]
32. Exploring the interaction of a potent anti-cancer drug Selumetinib with bovine serum albumin: Spectral and computational attributes. Jalan A, Sangeet S, Pradhan AK, Moyon NS. J Mol Recognit; 2024 Jul 02; 37(4):e3084. PubMed ID: 38596890 [Abstract] [Full Text] [Related]
33. Influence of tea polyphenol and bovine serum albumin on tea cream formation by multiple spectroscopy methods and molecular docking. Yu X, Cai X, Luo L, Wang J, Ma M, Wang M, Zeng L. Food Chem; 2020 Dec 15; 333():127432. PubMed ID: 32659661 [Abstract] [Full Text] [Related]
34. An investigation into the altered binding mode of green tea polyphenols with human serum albumin on complexation with copper. Singha Roy A, Ghosh KS, Dasgupta S. J Biomol Struct Dyn; 2013 Oct 15; 31(10):1191-206. PubMed ID: 23145958 [Abstract] [Full Text] [Related]
35. A multispectroscopic and molecular docking investigation of the binding interaction between serum albumins and acid orange dye. Naveenraj S, Solomon RV, Mangalaraja RV, Venuvanalingam P, Asiri AM, Anandan S. Spectrochim Acta A Mol Biomol Spectrosc; 2018 Mar 05; 192():34-40. PubMed ID: 29126006 [Abstract] [Full Text] [Related]
36. Spectroscopic and molecular docking study on the structure-affinity relationship and mechanism in the interaction of genistein and its derivatives with bovine serum albumin. Guo Y, Shen L, Yao X, Liu Y, Liu Y, Chen H, Min K, Zheng X. Luminescence; 2017 Dec 05; 32(8):1368-1384. PubMed ID: 28612369 [Abstract] [Full Text] [Related]
37. Investigations on the interaction of the phototoxic alkaloid coralyne with serum albumins. Khan AY, Hossain M, Suresh Kumar G. Chemosphere; 2012 May 05; 87(7):775-81. PubMed ID: 22305193 [Abstract] [Full Text] [Related]
38. Hydrophobic Interaction Between Domain I of Albumin and B Chain of Detemir May Support Myristate-Dependent Detemir-Albumin Binding. Fatima S, Sen P, Sneha P, Priyadoss CG. Appl Biochem Biotechnol; 2017 May 05; 182(1):82-96. PubMed ID: 27854036 [Abstract] [Full Text] [Related]
39. The influence of common metal ions on the interactions of the isoflavone genistein with bovine serum albumin. Singha Roy A, Tripathy DR, Chatterjee A, Dasgupta S. Spectrochim Acta A Mol Biomol Spectrosc; 2013 Feb 05; 102():393-402. PubMed ID: 23237845 [Abstract] [Full Text] [Related]
40. Characterization of colchicine binding with normal and glycated albumin: In vitro and molecular docking analysis. Rabbani N, Tabrez S, Islam BU, Rehman MT, Alsenaidy AM, AlAjmi MF, Khan RA, Alsenaidy MA, Khan MS. J Biomol Struct Dyn; 2018 Oct 05; 36(13):3453-3462. PubMed ID: 28990867 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]