These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
460 related items for PubMed ID: 34219920
1. Engineering Brightness Matched Indium Phosphide Quantum Dots. Toufanian R, Chern M, Kong VH, Dennis AM. Chem Mater; 2021 Mar 23; 33(6):1964-1975. PubMed ID: 34219920 [Abstract] [Full Text] [Related]
2. Quasi-Shell-Growth Strategy Achieves Stable and Efficient Green InP Quantum Dot Light-Emitting Diodes. Wu Q, Cao F, Wang S, Wang Y, Sun Z, Feng J, Liu Y, Wang L, Cao Q, Li Y, Wei B, Wong WY, Yang X. Adv Sci (Weinh); 2022 Jul 23; 9(21):e2200959. PubMed ID: 35618484 [Abstract] [Full Text] [Related]
3. Bandgap Engineering of Indium Phosphide-Based Core/Shell Heterostructures Through Shell Composition and Thickness. Toufanian R, Piryatinski A, Mahler AH, Iyer R, Hollingsworth JA, Dennis AM. Front Chem; 2018 Jul 23; 6():567. PubMed ID: 30515380 [Abstract] [Full Text] [Related]
4. Synthesis of near-infrared-emitting CdTe/CdSe/ZnSe/ZnS heterostructure. Yang P. J Nanosci Nanotechnol; 2014 Apr 23; 14(4):3147-54. PubMed ID: 24734747 [Abstract] [Full Text] [Related]
5. Synthesis of Alloyed ZnSeTe Quantum Dots as Bright, Color-Pure Blue Emitters. Jang EP, Han CY, Lim SW, Jo JH, Jo DY, Lee SH, Yoon SY, Yang H. ACS Appl Mater Interfaces; 2019 Dec 11; 11(49):46062-46069. PubMed ID: 31746194 [Abstract] [Full Text] [Related]
6. Enhanced thermal stability of InP quantum dots coated with Al-doped ZnS shell. Koh S, Lee H, Lee T, Park K, Kim WJ, Lee DC. J Chem Phys; 2019 Oct 14; 151(14):144704. PubMed ID: 31615236 [Abstract] [Full Text] [Related]
7. Suppressed Auger recombination and enhanced emission of InP/ZnSe/ZnS quantum dots through inner shell manipulation. Chen Y, Wang R, Kuang Y, Bian Y, Chen F, Shen H, Chi Z, Ran X, Guo L. Nanoscale; 2023 Nov 30; 15(46):18920-18927. PubMed ID: 37975758 [Abstract] [Full Text] [Related]
8. Extending the Near-Infrared Emission Range of Indium Phosphide Quantum Dots for Multiplexed In Vivo Imaging. Saeboe AM, Nikiforov AY, Toufanian R, Kays JC, Chern M, Casas JP, Han K, Piryatinski A, Jones D, Dennis AM. Nano Lett; 2021 Apr 14; 21(7):3271-3279. PubMed ID: 33755481 [Abstract] [Full Text] [Related]
9. Beneficial effects of water in the colloidal synthesis of InP/ZnS core-shell quantum dots for optoelectronic applications. Ramasamy P, Kim B, Lee MS, Lee JS. Nanoscale; 2016 Oct 21; 8(39):17159-17168. PubMed ID: 27540861 [Abstract] [Full Text] [Related]
10. Synthesis of far-red- and near-infrared-emitting Cu-doped InP/ZnS (core/shell) quantum dots with controlled doping steps and their surface functionalization for bioconjugation. Lim M, Lee W, Bang G, Lee WJ, Park Y, Kwon Y, Jung Y, Kim S, Bang J. Nanoscale; 2019 May 30; 11(21):10463-10471. PubMed ID: 31112192 [Abstract] [Full Text] [Related]
11. Chemical Structure, Ensemble and Single-Particle Spectroscopy of Thick-Shell InP-ZnSe Quantum Dots. Reid KR, McBride JR, Freymeyer NJ, Thal LB, Rosenthal SJ. Nano Lett; 2018 Feb 14; 18(2):709-716. PubMed ID: 29282985 [Abstract] [Full Text] [Related]
12. ZnF2-Assisted Synthesis of Highly Luminescent InP/ZnSe/ZnS Quantum Dots for Efficient and Stable Electroluminescence. Li H, Zhang W, Bian Y, Ahn TK, Shen H, Ji B. Nano Lett; 2022 May 25; 22(10):4067-4073. PubMed ID: 35536635 [Abstract] [Full Text] [Related]
17. II-VI core/shell quantum dots and doping with transition metal ions as a means of tuning the magnetoelectronic properties of CdS/ZnS core/shell QDs: A DFT study. Malik P, Thareja R, Singh J, Kakkar R. J Mol Graph Model; 2022 Mar 25; 111():108099. PubMed ID: 34871980 [Abstract] [Full Text] [Related]