These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
116 related items for PubMed ID: 3422735
1. High postmortem levels of hypoxanthine in the vitreous humor of premature babies with respiratory distress syndrome. Saugstad OD, Rognum TO. Pediatrics; 1988 Mar; 81(3):395-8. PubMed ID: 3422735 [Abstract] [Full Text] [Related]
2. Elevated levels of hypoxanthine in vitreous humor indicate prolonged cerebral hypoxia in victims of sudden infant death syndrome. Rognum TO, Saugstad OD, Oyasaeter S, Olaisen B. Pediatrics; 1988 Oct; 82(4):615-8. PubMed ID: 3174318 [Abstract] [Full Text] [Related]
3. Plasma hypoxanthine and xanthine levels in the early newborn period in problem-free preterm babies and those with idiopathic respiratory distress syndrome. Karmazsin L, Balla G. Acta Paediatr Hung; 1985 Oct; 26(1):1-9. PubMed ID: 3986048 [Abstract] [Full Text] [Related]
4. Post-mortem concentrations of hypoxanthine in the vitreous humor--a comparison between babies with severe respiratory failure, congenital abnormalities of the heart, and victims of sudden infant death syndrome. Poulsen JP, Rognum TO, Hauge S, Oyasaeter S, Saugstad OD. J Perinat Med; 1993 Oct; 21(2):153-63. PubMed ID: 8515358 [Abstract] [Full Text] [Related]
5. Raised plasma hypoxanthine levels as a prognostic sign in preterm babies with respiratory distress syndrome treated with natural surfactant. Saugstad OD, Tubman TR, Gloppestad K, Halliday HL, Oyasaeter S, Curstedt T, Robertson B. J Perinat Med; 1992 Oct; 20(5):379-85. PubMed ID: 1479521 [Abstract] [Full Text] [Related]
6. Hypoxanthine levels in vitreous humor: evidence of hypoxia in most infants who died of sudden infant death syndrome. Rognum TO, Saugstad OD. Pediatrics; 1991 Mar; 87(3):306-10. PubMed ID: 1796934 [Abstract] [Full Text] [Related]
7. The Provo multicenter early high-frequency oscillatory ventilation trial: improved pulmonary and clinical outcome in respiratory distress syndrome. Gerstmann DR, Minton SD, Stoddard RA, Meredith KS, Monaco F, Bertrand JM, Battisti O, Langhendries JP, Francois A, Clark RH. Pediatrics; 1996 Dec; 98(6 Pt 1):1044-57. PubMed ID: 8951252 [Abstract] [Full Text] [Related]
8. [Are there predictors for proliferative retinopathy of prematurity and is supplemental oxygen a useful conservative treatment option?]. Müller H, Weiss C, Kuntz S, Akkoyun I, Schaible T. Klin Padiatr; 2005 Dec; 217(2):53-60. PubMed ID: 15770574 [Abstract] [Full Text] [Related]
9. Blood L-arginine levels in early respiratory distress syndrome. Canpolat FE, Yurdakök M, Yiğit S, Korkmaz A, Tekinalp G. Pediatr Pulmonol; 2005 Dec; 40(6):511-4. PubMed ID: 16229020 [Abstract] [Full Text] [Related]
10. High postmortem concentrations of hypoxanthine and urate in the vitreous humor of infants are not confined to cases of sudden infant death syndrome. Belonje PC, Wilson GR, Siroka SA. S Afr Med J; 1996 Jul; 86(7):827-8. PubMed ID: 8764909 [Abstract] [Full Text] [Related]
11. Correlation of plasma hypoxanthine and catecholamine levels in the umbilical vein. Saugstad OD, Ziegler MG, Kessel B, Saunders B, Gluck L. J Perinat Med; 1986 Jul; 14(5):339-43. PubMed ID: 3783399 [Abstract] [Full Text] [Related]
12. Hypoxanthine as a measurement of hypoxia. Saugstad OD. Pediatr Res; 1975 Apr; 9(4):158-61. PubMed ID: 1143950 [Abstract] [Full Text] [Related]
13. Inhaled nitric oxide in the management of preterm infants with severe respiratory failure. Su PH, Chen JY. J Perinatol; 2008 Feb; 28(2):112-6. PubMed ID: 17989696 [Abstract] [Full Text] [Related]
14. [An attempt to evaluate the dependence between the concentration of fT3, fT4 and TSH in blood serum and the chosen perinatal risk factors in prematurity born babies with Respiratory Distress Syndrome]. Bielawska-Sowa A. Przegl Lek; 2002 Feb; 59 Suppl 1():117-21. PubMed ID: 12108059 [Abstract] [Full Text] [Related]
15. Role of antioxidant nutrients and lipid peroxidation in premature infants with respiratory distress syndrome and bronchopulmonary dysplasia. Falciglia HS, Johnson JR, Sullivan J, Hall CF, Miller JD, Riechmann GC, Falciglia GA. Am J Perinatol; 2003 Feb; 20(2):97-107. PubMed ID: 12660915 [Abstract] [Full Text] [Related]
16. Changes in oxypurine concentrations in vitreous humor of pigs during hypoxemia and post-mortem. Poulsen JP, Rognum TO, Oyasaeter S, Saugstad OD. Pediatr Res; 1990 Nov; 28(5):482-4. PubMed ID: 2255572 [Abstract] [Full Text] [Related]
17. High-frequency jet ventilation in the early management of respiratory distress syndrome is associated with a greater risk for adverse outcomes. Wiswell TE, Graziani LJ, Kornhauser MS, Cullen J, Merton DA, McKee L, Spitzer AR. Pediatrics; 1996 Dec; 98(6 Pt 1):1035-43. PubMed ID: 8951251 [Abstract] [Full Text] [Related]
18. ACE gene deletion/deletion polymorphism may be a protective factor for respiratory distress in preterm infants. Sivasli E, Yurdakök M, Babaoğlu E, Karabulut H, Yiğit S, Babaoğlu M, Tekinalp G, Tükün A. Turk J Pediatr; 2007 Dec; 49(1):69-74. PubMed ID: 17479647 [Abstract] [Full Text] [Related]
19. Bubble continuous positive airway pressure, a potentially better practice, reduces the use of mechanical ventilation among very low birth weight infants with respiratory distress syndrome. Nowadzky T, Pantoja A, Britton JR. Pediatrics; 2009 Jun; 123(6):1534-40. PubMed ID: 19482765 [Abstract] [Full Text] [Related]
20. Respiratory distress in newborn: treated with ventilation in a level II nursery. Malhotra AK, Nagpal R, Gupta RK, Chhajta DS, Arora RK. Indian Pediatr; 1995 Feb; 32(2):207-11. PubMed ID: 8635783 [Abstract] [Full Text] [Related] Page: [Next] [New Search]