These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


460 related items for PubMed ID: 34232724

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22. Thrips tabaci population genetic structure and polyploidy in relation to competency as a vector of tomato spotted wilt virus.
    Jacobson AL, Booth W, Vargo EL, Kennedy GG.
    PLoS One; 2013; 8(1):e54484. PubMed ID: 23365671
    [Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25. Transmission mode of watermelon silver mottle virus by Thrips palmi.
    Mou DF, Chen WT, Li WH, Chen TC, Tseng CH, Huang LH, Peng JC, Yeh SD, Tsai CW.
    PLoS One; 2021; 16(3):e0247500. PubMed ID: 33657150
    [Abstract] [Full Text] [Related]

  • 26. Three decades of managing Tomato spotted wilt virus in peanut in southeastern United States.
    Srinivasan R, Abney MR, Culbreath AK, Kemerait RC, Tubbs RS, Monfort WS, Pappu HR.
    Virus Res; 2017 Sep 15; 241():203-212. PubMed ID: 28549856
    [Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30. A thrips vector of tomato spotted wilt virus responds to tomato acylsugar chemical diversity with reduced oviposition and virus inoculation.
    Ben-Mahmoud S, Anderson T, Chappell TM, Smeda JR, Mutschler MA, Kennedy GG, De Jong DM, Ullman DE.
    Sci Rep; 2019 Nov 20; 9(1):17157. PubMed ID: 31748622
    [Abstract] [Full Text] [Related]

  • 31. Effects of Thrips Density, Mode of Inoculation, and Plant Age on Tomato Spotted Wilt Virus Transmission in Peanut Plants.
    Shrestha A, Sundaraj S, Culbreath AK, Riley DG, Abney MR, Srinivasan R.
    Environ Entomol; 2015 Feb 20; 44(1):136-43. PubMed ID: 26308816
    [Abstract] [Full Text] [Related]

  • 32. Development of a real-time fluorescent quantitative PCR assay for detection of Impatiens necrotic spot virus.
    Chen X, Xu X, Li Y, Liu Y.
    J Virol Methods; 2013 May 20; 189(2):299-304. PubMed ID: 23466630
    [Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Disruption of vector transmission by a plant-expressed viral glycoprotein.
    Montero-Astúa M, Rotenberg D, Leach-Kieffaber A, Schneweis BA, Park S, Park JK, German TL, Whitfield AE.
    Mol Plant Microbe Interact; 2014 Mar 20; 27(3):296-304. PubMed ID: 24405031
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Evolution and structure of Tomato spotted wilt virus populations: evidence of extensive reassortment and insights into emergence processes.
    Tentchev D, Verdin E, Marchal C, Jacquet M, Aguilar JM, Moury B.
    J Gen Virol; 2011 Apr 20; 92(Pt 4):961-73. PubMed ID: 21169211
    [Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. De novo transcriptome sequencing in Frankliniella occidentalis to identify genes involved in plant virus transmission and insecticide resistance.
    Zhang Z, Zhang P, Li W, Zhang J, Huang F, Yang J, Bei Y, Lu Y.
    Genomics; 2013 May 20; 101(5):296-305. PubMed ID: 23434629
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 23.