These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


470 related items for PubMed ID: 34237661

  • 1. Real-time conversion of inertial measurement unit data to ankle joint angles using deep neural networks.
    Senanayake D, Halgamuge S, Ackland DC.
    J Biomech; 2021 Aug 26; 125():110552. PubMed ID: 34237661
    [Abstract] [Full Text] [Related]

  • 2. Estimation of the Continuous Walking Angle of Knee and Ankle (Talocrural Joint, Subtalar Joint) of a Lower-Limb Exoskeleton Robot Using a Neural Network.
    Lee T, Kim I, Lee SH.
    Sensors (Basel); 2021 Apr 16; 21(8):. PubMed ID: 33923587
    [Abstract] [Full Text] [Related]

  • 3. DeepBBWAE-Net: A CNN-RNN Based Deep SuperLearner for Estimating Lower Extremity Sagittal Plane Joint Kinematics Using Shoe-Mounted IMU Sensors in Daily Living.
    Hossain MSB, Dranetz J, Choi H, Guo Z.
    IEEE J Biomed Health Inform; 2022 Aug 16; 26(8):3906-3917. PubMed ID: 35385394
    [Abstract] [Full Text] [Related]

  • 4. Lower body kinematics estimation from wearable sensors for walking and running: A deep learning approach.
    Hernandez V, Dadkhah D, Babakeshizadeh V, Kulić D.
    Gait Posture; 2021 Jan 16; 83():185-193. PubMed ID: 33161275
    [Abstract] [Full Text] [Related]

  • 5. Conversion of Upper-Limb Inertial Measurement Unit Data to Joint Angles: A Systematic Review.
    Fang Z, Woodford S, Senanayake D, Ackland D.
    Sensors (Basel); 2023 Jul 19; 23(14):. PubMed ID: 37514829
    [Abstract] [Full Text] [Related]

  • 6. Prediction of Lower Extremity Multi-Joint Angles during Overground Walking by Using a Single IMU with a Low Frequency Based on an LSTM Recurrent Neural Network.
    Sung J, Han S, Park H, Cho HM, Hwang S, Park JW, Youn I.
    Sensors (Basel); 2021 Dec 22; 22(1):. PubMed ID: 35009591
    [Abstract] [Full Text] [Related]

  • 7. OpenSense: An open-source toolbox for inertial-measurement-unit-based measurement of lower extremity kinematics over long durations.
    Al Borno M, O'Day J, Ibarra V, Dunne J, Seth A, Habib A, Ong C, Hicks J, Uhlrich S, Delp S.
    J Neuroeng Rehabil; 2022 Feb 20; 19(1):22. PubMed ID: 35184727
    [Abstract] [Full Text] [Related]

  • 8. Optimization of IMU Sensor Placement for the Measurement of Lower Limb Joint Kinematics.
    Niswander W, Wang W, Kontson K.
    Sensors (Basel); 2020 Oct 22; 20(21):. PubMed ID: 33105876
    [Abstract] [Full Text] [Related]

  • 9. Open-source software library for real-time inertial measurement unit data-based inverse kinematics using OpenSim.
    Lavikainen J, Vartiainen P, Stenroth L, Karjalainen PA.
    PeerJ; 2023 Oct 22; 11():e15097. PubMed ID: 37038471
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Lower Extremity Inverse Kinematics Results Differ Between Inertial Measurement Unit- and Marker-Derived Gait Data.
    Hafer JF, Mihy JA, Hunt A, Zernicke RF, Johnson RT.
    J Appl Biomech; 2023 Jun 01; 39(3):133-142. PubMed ID: 37024103
    [Abstract] [Full Text] [Related]

  • 14. Validity and Sensitivity of an Inertial Measurement Unit-Driven Biomechanical Model of Motor Variability for Gait.
    Bailey CA, Uchida TK, Nantel J, Graham RB.
    Sensors (Basel); 2021 Nov 19; 21(22):. PubMed ID: 34833766
    [Abstract] [Full Text] [Related]

  • 15. Concurrent validity and within-session reliability of gait kinematics measured using an inertial motion capture system with repeated calibration.
    Berner K, Cockcroft J, Morris LD, Louw Q.
    J Bodyw Mov Ther; 2020 Oct 19; 24(4):251-260. PubMed ID: 33218520
    [Abstract] [Full Text] [Related]

  • 16. Verification of gait analysis method fusing camera-based pose estimation and an IMU sensor in various gait conditions.
    Yamamoto M, Shimatani K, Ishige Y, Takemura H.
    Sci Rep; 2022 Oct 21; 12(1):17719. PubMed ID: 36271241
    [Abstract] [Full Text] [Related]

  • 17. Body-Worn IMU-Based Human Hip and Knee Kinematics Estimation during Treadmill Walking.
    McGrath T, Stirling L.
    Sensors (Basel); 2022 Mar 26; 22(7):. PubMed ID: 35408159
    [Abstract] [Full Text] [Related]

  • 18. Validation of Non-Restrictive Inertial Gait Analysis of Individuals with Incomplete Spinal Cord Injury in Clinical Settings.
    Haji Hassani R, Willi R, Rauter G, Bolliger M, Seel T.
    Sensors (Basel); 2022 Jun 02; 22(11):. PubMed ID: 35684860
    [Abstract] [Full Text] [Related]

  • 19. Randomized controlled trial on ankle biomechanics in the treatment of functional ankle instability with joint mobilization.
    Yin Y, Lin Q, Wang J.
    Sci Rep; 2024 Sep 27; 14(1):22095. PubMed ID: 39333240
    [Abstract] [Full Text] [Related]

  • 20. Validity of Measurement for Trailing Limb Angle and Propulsion Force during Gait Using a Magnetic Inertial Measurement Unit.
    Miyazaki T, Kawada M, Nakai Y, Kiyama R, Yone K.
    Biomed Res Int; 2019 Sep 27; 2019():8123467. PubMed ID: 31930138
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 24.