These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
140 related items for PubMed ID: 342498
1. 2-deoxygalactose, a specific substrate of the Salmonella typhiimurium galactose permease: its use for the isolation of galP mutants. Nagelkerke F, Postma PW. J Bacteriol; 1978 Feb; 133(2):607-13. PubMed ID: 342498 [Abstract] [Full Text] [Related]
2. Galactose transport in Salmonella typhimurium. Postma PW. J Bacteriol; 1977 Feb; 129(2):630-9. PubMed ID: 190207 [Abstract] [Full Text] [Related]
3. Regulation of methyl beta-galactoside permease activity in pts and crr mutants of Salmonella typhimurium. Postma PW, Schuitema A, Kwa C. Mol Gen Genet; 1981 Feb; 181(4):448-53. PubMed ID: 6267419 [Abstract] [Full Text] [Related]
4. 2-Deoxy-D-galactose, a substrate for the galactose-transport system of Escherichia coli. Henderson PJ, Giddens RA. Biochem J; 1977 Oct 15; 168(1):15-22. PubMed ID: 23115 [Abstract] [Full Text] [Related]
5. Characterization of constitutive galactose permease mutants in Salmonella typhimurium. Saier MH, Bromberg FG, Roseman S. J Bacteriol; 1973 Jan 15; 113(1):512-4. PubMed ID: 4569699 [Abstract] [Full Text] [Related]
6. Proline transport in Salmonella typhimurium: putP permease mutants with altered substrate specificity. Dila DK, Maloy SR. J Bacteriol; 1986 Nov 15; 168(2):590-4. PubMed ID: 3536852 [Abstract] [Full Text] [Related]
7. Sugar transport by the bacterial phosphotransferase system. Reconstitution of inducer exclusion in Salmonella typhimurium membrane vesicles. Misko TP, Mitchell WJ, Meadow ND, Roseman S. J Biol Chem; 1987 Nov 25; 262(33):16261-6. PubMed ID: 3316216 [Abstract] [Full Text] [Related]
8. Cooperative binding of the sugar substrates and allosteric regulatory protein (enzyme IIIGlc of the phosphotransferase system) to the lactose and melibiose permeases in Escherichia coli and Salmonella typhimurium. Saier MH, Novotny MJ, Comeau-Fuhrman D, Osumi T, Desai JD. J Bacteriol; 1983 Sep 25; 155(3):1351-7. PubMed ID: 6350268 [Abstract] [Full Text] [Related]
9. Transport of 5-aminolevulinic acid by the dipeptide permease in Salmonella typhimurium. Elliott T. J Bacteriol; 1993 Jan 25; 175(2):325-31. PubMed ID: 8380400 [Abstract] [Full Text] [Related]
10. Proton movements coupled to sugar transport via the galactose transport system in Salmonella typhimurium. Thienen GM, Postma PW, Dam KV. Eur J Biochem; 1977 Mar 01; 73(2):521-7. PubMed ID: 14832 [Abstract] [Full Text] [Related]
11. Sugar transport by the bacterial phosphotransferase system. Regulation of other transport systems (lactose and melibiose). Mitchell WJ, Misko TP, Roseman S. J Biol Chem; 1982 Dec 10; 257(23):14553-64. PubMed ID: 6815195 [Abstract] [Full Text] [Related]
12. Evidence for binding protein-independent substrate translocation by the methylgalactoside transport system of Escherichia coli K12. Robbins AR, Rotman B. Proc Natl Acad Sci U S A; 1975 Feb 10; 72(2):423-7. PubMed ID: 1091926 [Abstract] [Full Text] [Related]
13. Adaptation of Salmonella typhimurium mutants containing uncoupled enzyme IIGlc to glucose-limited conditions. Ruijter GJ, Postma PW, van Dam K. J Bacteriol; 1990 Sep 10; 172(9):4783-9. PubMed ID: 2203730 [Abstract] [Full Text] [Related]
14. Substrate specificity of a glucose permease of Escherichia coli. ROGERS D, YU SH. J Bacteriol; 1962 Nov 10; 84(5):877-81. PubMed ID: 13982383 [Abstract] [Full Text] [Related]
15. An analysis of lactose permease "sugar specificity" mutations which also affect the coupling between proton and lactose transport. II. Second site revertants of the thiodigalactoside-dependent proton leak by the Val177/Asn319 permease. Eelkema JA, O'Donnell MA, Brooker RJ. J Biol Chem; 1991 Mar 05; 266(7):4139-44. PubMed ID: 1999408 [Abstract] [Full Text] [Related]
16. Isolation of lactose permease mutants which recognize arabinose. Goswitz VC, Brooker RJ. Membr Biochem; 1993 Mar 05; 10(1):61-70. PubMed ID: 8510563 [Abstract] [Full Text] [Related]
17. Isolation and characterization of thiodigalactoside-resistant mutants of the lactose permease which possess an enhanced recognition for maltose. Franco PJ, Eelkema JA, Brooker RJ. J Biol Chem; 1989 Sep 25; 264(27):15988-92. PubMed ID: 2674122 [Abstract] [Full Text] [Related]
18. An evolvant of Escherichia coli that employs the L-fucose pathway also for growth on L-galactose and D-arabinose. Zhu Y, Lin EC. J Mol Evol; 1986 Sep 25; 23(3):259-66. PubMed ID: 3100814 [Abstract] [Full Text] [Related]
19. Galactose transport systems in Streptococcus lactis. Thompson J. J Bacteriol; 1980 Nov 25; 144(2):683-91. PubMed ID: 6776094 [Abstract] [Full Text] [Related]
20. The L-arabinose permease system in Escherichia coli B/r. Novotny CP, Englesberg E. Biochim Biophys Acta; 1966 Mar 28; 117(1):217-30. PubMed ID: 5330661 [No Abstract] [Full Text] [Related] Page: [Next] [New Search]