These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
180 related items for PubMed ID: 34252406
1. Identification of a new class of potent aldose reductase inhibitors: Design, microwave-assisted synthesis, in vitro and in silico evaluation of 2-pyrazolines. Sever B, Altıntop MD, Demir Y, Yılmaz N, Akalın Çiftçi G, Beydemir Ş, Özdemir A. Chem Biol Interact; 2021 Aug 25; 345():109576. PubMed ID: 34252406 [Abstract] [Full Text] [Related]
2. Design, synthesis, in vitro and in silico investigation of aldose reductase inhibitory effects of new thiazole-based compounds. Sever B, Altıntop MD, Demir Y, Akalın Çiftçi G, Beydemir Ş, Özdemir A. Bioorg Chem; 2020 Sep 25; 102():104110. PubMed ID: 32739480 [Abstract] [Full Text] [Related]
3. Synthesis and biological evaluation of some new pyrazoline substituted benzenesulfonylurea/thiourea derivatives as anti-hyperglycaemic agents and aldose reductase inhibitors. Ovais S, Pushpalatha H, Reddy GB, Rathore P, Bashir R, Yaseen S, Dheyaa A, Yaseen R, Tanwar O, Akthar M, Samim M, Javed K. Eur J Med Chem; 2014 Jun 10; 80():209-17. PubMed ID: 24780598 [Abstract] [Full Text] [Related]
4. Determination of the inhibition profiles of pyrazolyl-thiazole derivatives against aldose reductase and α-glycosidase and molecular docking studies. Demir Y, Taslimi P, Koçyiğit ÜM, Akkuş M, Özaslan MS, Duran HE, Budak Y, Tüzün B, Gürdere MB, Ceylan M, Taysi S, Gülçin İ, Beydemir Ş. Arch Pharm (Weinheim); 2020 Dec 10; 353(12):e2000118. PubMed ID: 32761859 [Abstract] [Full Text] [Related]
5. Non-carboxylic acid inhibitors of aldose reductase based on N-substituted thiazolidinedione derivatives. Mohd Siddique MU, Thakur A, Shilkar D, Yasmin S, Halakova D, Kovacikova L, Prnova MS, Stefek M, Acevedo O, Dasararaju G, Devadasan V, Mondal SK, Jayaprakash V. Eur J Med Chem; 2021 Nov 05; 223():113630. PubMed ID: 34175538 [Abstract] [Full Text] [Related]
6. In vitro studies of potent aldose reductase inhibitors: Synthesis, characterization, biological evaluation and docking analysis of rhodanine-3-hippuric acid derivatives. Celestina SK, Sundaram K, Ravi S. Bioorg Chem; 2020 Apr 05; 97():103640. PubMed ID: 32086051 [Abstract] [Full Text] [Related]
7. A new series of hydrazones as small-molecule aldose reductase inhibitors. Altıntop MD, Demir Y, Türkeş C, Öztürk RB, Cantürk Z, Beydemir Ş, Özdemir A. Arch Pharm (Weinheim); 2023 Apr 05; 356(4):e2200570. PubMed ID: 36603162 [Abstract] [Full Text] [Related]
8. Screening and characterization of aldose reductase inhibitors from Traditional Chinese medicine based on ultrafiltration-liquid chromatography mass spectrometry and in silico molecular docking. Zhang H, Xu C, Tian Q, Zhang Y, Zhang G, Guan Y, Tong S, Yan J. J Ethnopharmacol; 2021 Jan 10; 264():113282. PubMed ID: 32890716 [Abstract] [Full Text] [Related]
9. Novel spiroindoline derivatives targeting aldose reductase against diabetic complications: Bioactivity, cytotoxicity, and molecular modeling studies. Güleç Ö, Türkeş C, Arslan M, Demir Y, Dincer B, Ece A, İrfan Küfrevioğlu Ö, Beydemir Ş. Bioorg Chem; 2024 Apr 10; 145():107221. PubMed ID: 38387398 [Abstract] [Full Text] [Related]
10. Identification of quinoxalin-2(1H)-one derivatives as a novel class of multifunctional aldose reductase inhibitors. Hao X, Qin X, Zhang X, Ma B, Qi G, Yu T, Han Z, Zhu C. Future Med Chem; 2019 Dec 10; 11(23):2989-3004. PubMed ID: 31659919 [Abstract] [Full Text] [Related]
11. Discovery of new inhibitors of aldose reductase from molecular docking and database screening. Rastelli G, Ferrari AM, Costantino L, Gamberini MC. Bioorg Med Chem; 2002 May 10; 10(5):1437-50. PubMed ID: 11886806 [Abstract] [Full Text] [Related]
12. Structure-activity relationships studies of quinoxalinone derivatives as aldose reductase inhibitors. Hussain S, Parveen S, Hao X, Zhang S, Wang W, Qin X, Yang Y, Chen X, Zhu S, Zhu C, Ma B. Eur J Med Chem; 2014 Jun 10; 80():383-92. PubMed ID: 24793885 [Abstract] [Full Text] [Related]
13. Mechanistic inhibition of non-enzymatic glycation and aldose reductase activity by naringenin: Binding, enzyme kinetics and molecular docking analysis. Khan MS, Qais FA, Rehman MT, Ismail MH, Alokail MS, Altwaijry N, Alafaleq NO, AlAjmi MF, Salem N, Alqhatani R. Int J Biol Macromol; 2020 Sep 15; 159():87-97. PubMed ID: 32437808 [Abstract] [Full Text] [Related]
14. Synthesis, Biological Evaluation and in Silico Studies of New Pyrazoline Derivatives Bearing Benzo[d]thiazol-2(3H)-one Moiety as Potential Urease Inhibitors. Tok F, Baltaş N, Tatar G, Koçyiğit-Kaymakçıoğlu B. Chem Biodivers; 2022 Mar 15; 19(3):e202100826. PubMed ID: 35018718 [Abstract] [Full Text] [Related]
15. Kinetics and molecular docking studies of kaempferol and its prenylated derivatives as aldose reductase inhibitors. Jung HA, Moon HE, Oh SH, Kim BW, Sohn HS, Choi JS. Chem Biol Interact; 2012 May 30; 197(2-3):110-8. PubMed ID: 22543015 [Abstract] [Full Text] [Related]
19. 1-Hydroxypyrazole as a bioisostere of the acetic acid moiety in a series of aldose reductase inhibitors. Papastavrou N, Chatzopoulou M, Pegklidou K, Nicolaou I. Bioorg Med Chem; 2013 Sep 01; 21(17):4951-7. PubMed ID: 23891165 [Abstract] [Full Text] [Related]
20. Synthesis of organic nitrates of luteolin as a novel class of potent aldose reductase inhibitors. Wang QQ, Cheng N, Zheng XW, Peng SM, Zou XQ. Bioorg Med Chem; 2013 Jul 15; 21(14):4301-10. PubMed ID: 23683835 [Abstract] [Full Text] [Related] Page: [Next] [New Search]