These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


133 related items for PubMed ID: 34252455

  • 1. Structural insights into a flavin-dependent dehalogenase HadA explain catalysis and substrate inhibition via quadruple π-stacking.
    Pimviriyakul P, Jaruwat A, Chitnumsub P, Chaiyen P.
    J Biol Chem; 2021 Aug; 297(2):100952. PubMed ID: 34252455
    [Abstract] [Full Text] [Related]

  • 2. Formation and stabilization of C4a-hydroperoxy-FAD by the Arg/Asn pair in HadA monooxygenase.
    Pimviriyakul P, Chaiyen P.
    FEBS J; 2023 Jan; 290(1):176-195. PubMed ID: 35942637
    [Abstract] [Full Text] [Related]

  • 3. A complete bioconversion cascade for dehalogenation and denitration by bacterial flavin-dependent enzymes.
    Pimviriyakul P, Chaiyen P.
    J Biol Chem; 2018 Nov 30; 293(48):18525-18539. PubMed ID: 30282807
    [Abstract] [Full Text] [Related]

  • 4. Structural analyses of the Group A flavin-dependent monooxygenase PieE reveal a sliding FAD cofactor conformation bridging OUT and IN conformations.
    Manenda MS, Picard MÈ, Zhang L, Cyr N, Zhu X, Barma J, Pascal JM, Couture M, Zhang C, Shi R.
    J Biol Chem; 2020 Apr 03; 295(14):4709-4722. PubMed ID: 32111738
    [Abstract] [Full Text] [Related]

  • 5. Kinetic Mechanism of the Dechlorinating Flavin-dependent Monooxygenase HadA.
    Pimviriyakul P, Thotsaporn K, Sucharitakul J, Chaiyen P.
    J Biol Chem; 2017 Mar 24; 292(12):4818-4832. PubMed ID: 28159841
    [Abstract] [Full Text] [Related]

  • 6. Single-Component and Two-Component para-Nitrophenol Monooxygenases: Structural Basis for Their Catalytic Difference.
    Guo Y, Li DF, Zheng J, Xu Y, Zhou NY.
    Appl Environ Microbiol; 2021 Oct 28; 87(22):e0117121. PubMed ID: 34469195
    [Abstract] [Full Text] [Related]

  • 7. Structural Determinants of Flavin Dynamics in a Class B Monooxygenase.
    Campbell AC, Robinson R, Mena-Aguilar D, Sobrado P, Tanner JJ.
    Biochemistry; 2020 Dec 08; 59(48):4609-4616. PubMed ID: 33226785
    [Abstract] [Full Text] [Related]

  • 8. The crystal structure of phenol hydroxylase in complex with FAD and phenol provides evidence for a concerted conformational change in the enzyme and its cofactor during catalysis.
    Enroth C, Neujahr H, Schneider G, Lindqvist Y.
    Structure; 1998 May 15; 6(5):605-17. PubMed ID: 9634698
    [Abstract] [Full Text] [Related]

  • 9. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase.
    Roitel O, Scrutton NS, Munro AW.
    Biochemistry; 2003 Sep 16; 42(36):10809-21. PubMed ID: 12962506
    [Abstract] [Full Text] [Related]

  • 10. An unprecedented NADPH domain conformation in lysine monooxygenase NbtG provides insights into uncoupling of oxygen consumption from substrate hydroxylation.
    Binda C, Robinson RM, Martin Del Campo JS, Keul ND, Rodriguez PJ, Robinson HH, Mattevi A, Sobrado P.
    J Biol Chem; 2015 May 15; 290(20):12676-88. PubMed ID: 25802330
    [Abstract] [Full Text] [Related]

  • 11. Crystal structure of p-nitrophenol 4-monooxygenase PnpA from Pseudomonas putida DLL-E4: The key enzyme involved in p-nitrophenol degradation.
    Chen Q, Huang Y, Duan Y, Li Z, Cui Z, Liu W.
    Biochem Biophys Res Commun; 2018 Oct 12; 504(4):715-720. PubMed ID: 30217456
    [Abstract] [Full Text] [Related]

  • 12. Role of conserved arginine in HadA monooxygenase for 4-nitrophenol and 4-chlorophenol detoxification.
    Pimviriyakul P, Pholert P, Somjitt S, Choowongkomon K.
    Proteins; 2022 Jun 12; 90(6):1291-1302. PubMed ID: 35122330
    [Abstract] [Full Text] [Related]

  • 13. Dynamics involved in catalysis by single-component and two-component flavin-dependent aromatic hydroxylases.
    Ballou DP, Entsch B, Cole LJ.
    Biochem Biophys Res Commun; 2005 Dec 09; 338(1):590-8. PubMed ID: 16236251
    [Abstract] [Full Text] [Related]

  • 14. Identification of a Hotspot Residue for Improving the Thermostability of a Flavin-Dependent Monooxygenase.
    Pongpamorn P, Watthaisong P, Pimviriyakul P, Jaruwat A, Lawan N, Chitnumsub P, Chaiyen P.
    Chembiochem; 2019 Dec 13; 20(24):3020-3031. PubMed ID: 31231908
    [Abstract] [Full Text] [Related]

  • 15. Structural and catalytic differences between two FADH(2)-dependent monooxygenases: 2,4,5-TCP 4-monooxygenase (TftD) from Burkholderia cepacia AC1100 and 2,4,6-TCP 4-monooxygenase (TcpA) from Cupriavidus necator JMP134.
    Hayes RP, Webb BN, Subramanian AK, Nissen M, Popchock A, Xun L, Kang C.
    Int J Mol Sci; 2012 Dec 13; 13(8):9769-9784. PubMed ID: 22949829
    [Abstract] [Full Text] [Related]

  • 16. Mechanism of the Multistep Catalytic Cycle of 6-Hydroxynicotinate 3-Monooxygenase Revealed by Global Kinetic Analysis.
    Perkins SW, Hlaing MZ, Hicks KA, Rajakovich LJ, Snider MJ.
    Biochemistry; 2023 May 16; 62(10):1553-1567. PubMed ID: 37130364
    [Abstract] [Full Text] [Related]

  • 17. Crystal structure of the flavin reductase component (HpaC) of 4-hydroxyphenylacetate 3-monooxygenase from Thermus thermophilus HB8: Structural basis for the flavin affinity.
    Kim SH, Hisano T, Iwasaki W, Ebihara A, Miki K.
    Proteins; 2008 Feb 15; 70(3):718-30. PubMed ID: 17729270
    [Abstract] [Full Text] [Related]

  • 18. Stabilization of C4a-hydroperoxyflavin in a two-component flavin-dependent monooxygenase is achieved through interactions at flavin N5 and C4a atoms.
    Thotsaporn K, Chenprakhon P, Sucharitakul J, Mattevi A, Chaiyen P.
    J Biol Chem; 2011 Aug 12; 286(32):28170-80. PubMed ID: 21680741
    [Abstract] [Full Text] [Related]

  • 19. Characterization of chlorophenol 4-monooxygenase (TftD) and NADH:FAD oxidoreductase (TftC) of Burkholderia cepacia AC1100.
    Webb BN, Ballinger JW, Kim E, Belchik SM, Lam KS, Youn B, Nissen MS, Xun L, Kang C.
    J Biol Chem; 2010 Jan 15; 285(3):2014-27. PubMed ID: 19915006
    [Abstract] [Full Text] [Related]

  • 20. Tuning of pKa values activates substrates in flavin-dependent aromatic hydroxylases.
    Pitsawong W, Chenprakhon P, Dhammaraj T, Medhanavyn D, Sucharitakul J, Tongsook C, van Berkel WJH, Chaiyen P, Miller AF.
    J Biol Chem; 2020 Mar 20; 295(12):3965-3981. PubMed ID: 32014994
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.