These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
171 related items for PubMed ID: 3426224
21. Kinetics and modeling of reductive dechlorination at high PCE and TCE concentrations. Yu S, Semprini L. Biotechnol Bioeng; 2004 Nov 20; 88(4):451-64. PubMed ID: 15384053 [Abstract] [Full Text] [Related]
22. [Anaerobic biodegradation of tetrachloroethylene with methanol as co-metabolism substrate]. Li HD, Yang Q, Shang HT. Huan Jing Ke Xue; 2004 May 20; 25(3):84-8. PubMed ID: 15327260 [Abstract] [Full Text] [Related]
23. Complete remediation of PCE contaminated unsaturated soils by sequential anaerobic-aerobic bioventing. Mihopoulos PG, Suidan MT, Sayles GD. Water Sci Technol; 2001 May 20; 43(5):365-72. PubMed ID: 11379154 [Abstract] [Full Text] [Related]
24. Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions. Freedman DL, Gossett JM. Appl Environ Microbiol; 1989 Sep 20; 55(9):2144-51. PubMed ID: 2552919 [Abstract] [Full Text] [Related]
25. Characterization of an H2-utilizing enrichment culture that reductively dechlorinates tetrachloroethene to vinyl chloride and ethene in the absence of methanogenesis and acetogenesis. Maymó-Gatell X, Tandoi V, Gossett JM, Zinder SH. Appl Environ Microbiol; 1995 Nov 20; 61(11):3928-33. PubMed ID: 8526505 [Abstract] [Full Text] [Related]
26. Tetrachloroethene metabolism of Dehalospirillum multivorans. Neumann A, Scholz-Muramatsu H, Diekert G. Arch Microbiol; 1994 Nov 20; 162(4):295-301. PubMed ID: 7802545 [Abstract] [Full Text] [Related]
27. Reductive dechlorination of high concentrations of tetrachloroethene to ethene by an anaerobic enrichment culture in the absence of methanogenesis. DiStefano TD, Gossett JM, Zinder SH. Appl Environ Microbiol; 1991 Aug 20; 57(8):2287-92. PubMed ID: 1768101 [Abstract] [Full Text] [Related]
28. Variability in microbial carbon isotope fractionation of tetra- and trichloroethene upon reductive dechlorination. Cichocka D, Imfeld G, Richnow HH, Nijenhuis I. Chemosphere; 2008 Mar 20; 71(4):639-48. PubMed ID: 18155126 [Abstract] [Full Text] [Related]
29. Transformation and carbon isotope fractionation of tetra- and trichloroethene to trans-dichloroethene by Dehalococcoides sp. strain CBDB1. Marco-Urrea E, Nijenhuis I, Adrian L. Environ Sci Technol; 2011 Feb 15; 45(4):1555-62. PubMed ID: 21214238 [Abstract] [Full Text] [Related]
30. Ultrastructure of a bio-electrolytic methanogenic/methanotrophic granular biofilm for the complete degradation of tetrachloroethylene in contaminated groundwater. Guiot SR, Kuhn R, Lévesque MJ, Cimpoia R. Water Sci Technol; 2007 Feb 15; 55(8-9):465-71. PubMed ID: 17547018 [Abstract] [Full Text] [Related]
31. Characterization of the requirements and substrates for reductive dehalogenation by strain DCB-1. Linkfield TG, Tiedje JM. J Ind Microbiol; 1990 Jan 15; 5(1):9-15. PubMed ID: 1366377 [Abstract] [Full Text] [Related]
32. Bio-reduction of tetrachloroethen using a H2-based membrane biofilm reactor and community fingerprinting. Karataş S, Hasar H, Taşkan E, Özkaya B, Şahinkaya E. Water Res; 2014 Jul 01; 58():21-8. PubMed ID: 24731873 [Abstract] [Full Text] [Related]
33. Coexistence of two distinct Sulfurospirillum populations respiring tetrachloroethene-genomic and kinetic considerations. Buttet GF, Murray AM, Goris T, Burion M, Jin B, Rolle M, Holliger C, Maillard J. FEMS Microbiol Ecol; 2018 May 01; 94(5):. PubMed ID: 29518190 [Abstract] [Full Text] [Related]
34. Reductive dehalogenation of chlorophenols by Desulfomonile tiedjei DCB-1. Mohn WW, Kennedy KJ. Appl Environ Microbiol; 1992 Apr 01; 58(4):1367-70. PubMed ID: 1599254 [Abstract] [Full Text] [Related]
35. Complete dechlorination of tetrachloroethylene by use of an anaerobic Clostridium bifermentans DPH-1 and zero-valent iron. Chang YC, Kikuchi S, Kawauchi N, Sato T, Takamizawa K. Environ Technol; 2008 Apr 01; 29(4):381-91. PubMed ID: 18619143 [Abstract] [Full Text] [Related]
36. Desulfitobacterium sp. strain PCE1, an anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene or ortho-chlorinated phenols. Gerritse J, Renard V, Pedro Gomes TM, Lawson PA, Collins MD, Gottschal JC. Arch Microbiol; 1996 Feb 01; 165(2):132-40. PubMed ID: 8593100 [Abstract] [Full Text] [Related]
37. Phylogenetic analysis of bacterial populations in an anaerobic microbial consortium capable of degrading saturation concentrations of tetrachloroethylene. Dennis PC, Sleep BE, Fulthorpe RR, Liss SN. Can J Microbiol; 2003 Jan 01; 49(1):15-27. PubMed ID: 12674344 [Abstract] [Full Text] [Related]
38. Reductive dechlorination of tetrachloroethene by a stepwise catalysis of different organohalide respiring bacteria and reductive dehalogenases. Maillard J, Charnay MP, Regeard C, Rohrbach-Brandt E, Rouzeau-Szynalski K, Rossi P, Holliger C. Biodegradation; 2011 Sep 01; 22(5):949-60. PubMed ID: 21243405 [Abstract] [Full Text] [Related]
39. Anaerobic microbial reductive dechlorination of tetrachloroethene to predominately trans-1,2-dichloroethene. Griffin BM, Tiedje JM, Löffler FE. Environ Sci Technol; 2004 Aug 15; 38(16):4300-3. PubMed ID: 15382856 [Abstract] [Full Text] [Related]
40. Influence of different electron donors and acceptors on dehalorespiration of tetrachloroethene by Desulfitobacterium frappieri TCE1. Gerritse J, Drzyzga O, Kloetstra G, Keijmel M, Wiersum LP, Hutson R, Collins MD, Gottschal JC. Appl Environ Microbiol; 1999 Dec 15; 65(12):5212-21. PubMed ID: 10583967 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]