These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


418 related items for PubMed ID: 34280795

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Silver nanoparticles, nanoneedles and nanorings: impact of electromagnetic near-field on surface-enhanced Raman scattering.
    Hossain MK, Drmosh QA, Arifuzzaman M.
    Phys Chem Chem Phys; 2022 Apr 13; 24(15):8787-8799. PubMed ID: 35352733
    [Abstract] [Full Text] [Related]

  • 3. Plasmonic Pollen Grain Nanostructures: A Three-Dimensional Surface-Enhanced Raman Scattering (SERS)-Active Substrate.
    Hossain MK, Drmosh QA, Mohamedkhair AK.
    Chem Asian J; 2021 Jul 05; 16(13):1807-1819. PubMed ID: 34009749
    [Abstract] [Full Text] [Related]

  • 4. Half-raspberry-like bimetallic nanoassembly: Interstitial dependent correlated surface plasmon resonances and surface-enhanced Raman spectroscopy.
    Hossain MK, Kitahama Y, Ozaki Y.
    Phys Chem Chem Phys; 2021 Oct 27; 23(41):23875-23885. PubMed ID: 34651624
    [Abstract] [Full Text] [Related]

  • 5. Silver-Decorated Silicon Nanostructures: Fabrication and Characterization of Nanoscale Terraces as an Efficient SERS-Active Substrate.
    Hossain MK.
    Int J Mol Sci; 2022 Dec 21; 24(1):. PubMed ID: 36613545
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Localized surface plasmon resonance (LSPR) excitation on single silver nanoring with nanoscale surface roughness.
    Yu J, Gao Y, Zhang W, Wang P, Fang Y, Yang L.
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Sep 05; 317():124405. PubMed ID: 38718746
    [Abstract] [Full Text] [Related]

  • 8. Nanoassembly of gold nanoparticles: An active substrate for size-dependent surface-enhanced Raman scattering.
    Hossain MK.
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Dec 05; 242():118759. PubMed ID: 32795952
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Surface-enhanced Raman scattering-active silver nanostructures with two domains.
    Chang CC, Yang KH, Liu YC, Yu CC.
    Anal Chim Acta; 2012 Jan 04; 709():91-7. PubMed ID: 22122936
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. The finite-difference time-domain (FDTD) guided preparation of Ag nanostructures on Ti substrate for sensitive SERS detection of small molecules.
    Sun G, Fu C, Dong M, Jin G, Song Q.
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Mar 15; 269():120743. PubMed ID: 34942414
    [Abstract] [Full Text] [Related]

  • 16. Excitation wavelength dependent surface enhanced Raman scattering of 4-aminothiophenol on gold nanorings.
    Ye J, Hutchison JA, Uji-i H, Hofkens J, Lagae L, Maes G, Borghs G, Van Dorpe P.
    Nanoscale; 2012 Mar 07; 4(5):1606-11. PubMed ID: 22297424
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Silver overlayer-modified surface-enhanced Raman scattering-active gold substrates for potential applications in trace detection of biochemical species.
    Ou KL, Hsu TC, Liu YC, Yang KH, Tsai HY.
    Anal Chim Acta; 2014 Jan 02; 806():188-96. PubMed ID: 24331055
    [Abstract] [Full Text] [Related]

  • 19. Electromagnetic and chemical interaction between Ag nanoparticles and adsorbed rhodamine molecules in surface-enhanced Raman scattering.
    Futamata M, Maruyama Y.
    Anal Bioanal Chem; 2007 May 02; 388(1):89-102. PubMed ID: 17333146
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 21.