These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


177 related items for PubMed ID: 34284266

  • 1. An activatable chemiluminescence probe based on phenoxy-dioxetane scaffold for biothiol imaging in living systems.
    Fu A, Mao Y, Wang H, Cao Z.
    J Pharm Biomed Anal; 2021 Sep 10; 204():114266. PubMed ID: 34284266
    [Abstract] [Full Text] [Related]

  • 2. ortho-Chlorination of phenoxy 1,2-dioxetane yields superior chemiluminescent probes for in vitro and in vivo imaging.
    Eilon-Shaffer T, Roth-Konforti M, Eldar-Boock A, Satchi-Fainaro R, Shabat D.
    Org Biomol Chem; 2018 Mar 07; 16(10):1708-1712. PubMed ID: 29451576
    [Abstract] [Full Text] [Related]

  • 3. A facile turn-on chemiluminescence probe for sensitive imaging on aminopeptidase N activity.
    Sun R, Wu X, Mao Y, Wang H, Bian C, Lv P, Zhao Z, Li X, Fu W, Lu J, Cao Z.
    Luminescence; 2022 Aug 07; 37(8):1335-1342. PubMed ID: 35671536
    [Abstract] [Full Text] [Related]

  • 4. Remarkable Enhancement of Chemiluminescent Signal by Dioxetane-Fluorophore Conjugates: Turn-ON Chemiluminescence Probes with Color Modulation for Sensing and Imaging.
    Hananya N, Eldar Boock A, Bauer CR, Satchi-Fainaro R, Shabat D.
    J Am Chem Soc; 2016 Oct 12; 138(40):13438-13446. PubMed ID: 27652602
    [Abstract] [Full Text] [Related]

  • 5. Chemiluminescent Probes Based on 1,2-Dioxetane Structures For Bioimaging.
    Wang Y, Bian Y, Chen X, Su D.
    Chem Asian J; 2022 Mar 14; 17(6):e202200018. PubMed ID: 35088544
    [Abstract] [Full Text] [Related]

  • 6. An Activatable Chemiluminescent Probe for Sensitive Detection of γ-Glutamyl Transpeptidase Activity in Vivo.
    An R, Wei S, Huang Z, Liu F, Ye D.
    Anal Chem; 2019 Nov 05; 91(21):13639-13646. PubMed ID: 31560193
    [Abstract] [Full Text] [Related]

  • 7. Highly Bright Near-Infrared Chemiluminescent Probes for Cancer Imaging and Laparotomy.
    Wei X, Huang J, Zhang C, Xu C, Pu K, Zhang Y.
    Angew Chem Int Ed Engl; 2023 Feb 13; 62(8):e202213791. PubMed ID: 36579889
    [Abstract] [Full Text] [Related]

  • 8. Light emission enhancement by supramolecular complexation of chemiluminescence probes designed for bioimaging.
    Gnaim S, Scomparin A, Eldar-Boock A, Bauer CR, Satchi-Fainaro R, Shabat D.
    Chem Sci; 2019 Mar 14; 10(10):2945-2955. PubMed ID: 30996873
    [Abstract] [Full Text] [Related]

  • 9. Opening a Gateway for Chemiluminescence Cell Imaging: Distinctive Methodology for Design of Bright Chemiluminescent Dioxetane Probes.
    Green O, Eilon T, Hananya N, Gutkin S, Bauer CR, Shabat D.
    ACS Cent Sci; 2017 Apr 26; 3(4):349-358. PubMed ID: 28470053
    [Abstract] [Full Text] [Related]

  • 10. A chemiluminescent sensor for imaging endogenous hydrogen polysulfides in a living system.
    Zhao H, Qi F, Xiong Y, Lu J.
    Analyst; 2023 Jul 10; 148(14):3347-3353. PubMed ID: 37358821
    [Abstract] [Full Text] [Related]

  • 11. A tri-site fluorescent probe for simultaneous sensing of hydrogen sulfide and glutathione and its bioimaging applications.
    Chen F, Han D, Liu H, Wang S, Li KB, Zhang S, Shi W.
    Analyst; 2018 Jan 15; 143(2):440-448. PubMed ID: 29265125
    [Abstract] [Full Text] [Related]

  • 12. Development of a mitochondria targetable ratiometric time-gated luminescence probe for biothiols based on lanthanide complexes.
    Liu X, Song B, Ma H, Tang Z, Yuan J.
    J Mater Chem B; 2018 Mar 28; 6(12):1844-1851. PubMed ID: 32254256
    [Abstract] [Full Text] [Related]

  • 13. Persistent Chemiluminescent Glow of Phenoxy-dioxetane Luminophore Enables Unique CRET-Based Detection of Proteases.
    Hananya N, Press O, Das A, Scomparin A, Satchi-Fainaro R, Sagi I, Shabat D.
    Chemistry; 2019 Nov 18; 25(64):14679-14687. PubMed ID: 31495978
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Biothiol-Activatable Bioluminescent Coelenterazine Derivative for Molecular Imaging in Vitro and in Vivo.
    Nomura N, Nishihara R, Nakajima T, Kim SB, Iwasawa N, Hiruta Y, Nishiyama S, Sato M, Citterio D, Suzuki K.
    Anal Chem; 2019 Aug 06; 91(15):9546-9553. PubMed ID: 31291724
    [Abstract] [Full Text] [Related]

  • 17. Semiconducting Polymer Nanoreporters for Near-Infrared Chemiluminescence Imaging of Immunoactivation.
    Cui D, Li J, Zhao X, Pu K, Zhang R.
    Adv Mater; 2020 Feb 06; 32(6):e1906314. PubMed ID: 31833600
    [Abstract] [Full Text] [Related]

  • 18. Chemiluminescent Probe for the In Vitro and In Vivo Imaging of Cancers Over-Expressing NQO1.
    Son S, Won M, Green O, Hananya N, Sharma A, Jeon Y, Kwak JH, Sessler JL, Shabat D, Kim JS.
    Angew Chem Int Ed Engl; 2019 Feb 04; 58(6):1739-1743. PubMed ID: 30561862
    [Abstract] [Full Text] [Related]

  • 19. Bioimaging and Sensing Thiols In Vivo and in Tumor Tissues Based on a Near-Infrared Fluorescent Probe with Large Stokes Shift.
    Ma C, Yan D, Hou P, Liu X, Wang H, Xia C, Li G, Chen S.
    Molecules; 2023 Jul 27; 28(15):. PubMed ID: 37570672
    [Abstract] [Full Text] [Related]

  • 20. Rapid chemiexcitation of phenoxy-dioxetane luminophores yields ultrasensitive chemiluminescence assays.
    Hananya N, Reid JP, Green O, Sigman MS, Shabat D.
    Chem Sci; 2019 Feb 07; 10(5):1380-1385. PubMed ID: 30809354
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.