These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


225 related items for PubMed ID: 34294034

  • 1. Identification of tomato accessions as source of new genes for improving heat tolerance: from controlled experiments to field.
    Gonzalo MJ, Nájera I, Baixauli C, Gil D, Montoro T, Soriano V, Olivieri F, Rigano MM, Ganeva D, Grozeva-Tileva S, Pevicharova G, Barone A, Granell A, Monforte AJ.
    BMC Plant Biol; 2021 Jul 22; 21(1):345. PubMed ID: 34294034
    [Abstract] [Full Text] [Related]

  • 2. Genome wide association mapping for agronomic, fruit quality, and root architectural traits in tomato under organic farming conditions.
    Tripodi P, Soler S, Campanelli G, Díez MJ, Esposito S, Sestili S, Figàs MR, Leteo F, Casanova C, Platani C, Soler E, Bertone A, Pereira-Dias L, Palma D, Burguet R, Pepe A, Rosa-Martínez E, Prohens J, Cardi T.
    BMC Plant Biol; 2021 Oct 22; 21(1):481. PubMed ID: 34686145
    [Abstract] [Full Text] [Related]

  • 3. Identification of heat-tolerance QTLs and high-temperature stress-responsive genes through conventional QTL mapping, QTL-seq and RNA-seq in tomato.
    Wen J, Jiang F, Weng Y, Sun M, Shi X, Zhou Y, Yu L, Wu Z.
    BMC Plant Biol; 2019 Sep 11; 19(1):398. PubMed ID: 31510927
    [Abstract] [Full Text] [Related]

  • 4. Temperature stress differentially modulates transcription in meiotic anthers of heat-tolerant and heat-sensitive tomato plants.
    Bita CE, Zenoni S, Vriezen WH, Mariani C, Pezzotti M, Gerats T.
    BMC Genomics; 2011 Jul 31; 12():384. PubMed ID: 21801454
    [Abstract] [Full Text] [Related]

  • 5. Genomic and Phenotypic Diversity of Cultivated and Wild Tomatoes with Varying Levels of Heat Tolerance.
    Ayenan MAT, Danquah A, Agre PA, Hanson P, Asante IK, Danquah EY.
    Genes (Basel); 2021 Mar 29; 12(4):. PubMed ID: 33805499
    [Abstract] [Full Text] [Related]

  • 6. Breeding for plant heat tolerance at vegetative and reproductive stages.
    Driedonks N, Rieu I, Vriezen WH.
    Plant Reprod; 2016 Jun 29; 29(1-2):67-79. PubMed ID: 26874710
    [Abstract] [Full Text] [Related]

  • 7. Phenotyping from lab to field - tomato lines screened for heat stress using Fv/Fm maintain high fruit yield during thermal stress in the field.
    Poudyal D, Rosenqvist E, Ottosen CO.
    Funct Plant Biol; 2018 Jan 29; 46(1):44-55. PubMed ID: 30939257
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Ectopic expression of Arabidopsis glutaredoxin AtGRXS17 enhances thermotolerance in tomato.
    Wu Q, Lin J, Liu JZ, Wang X, Lim W, Oh M, Park J, Rajashekar CB, Whitham SA, Cheng NH, Hirschi KD, Park S.
    Plant Biotechnol J; 2012 Oct 29; 10(8):945-55. PubMed ID: 22762155
    [Abstract] [Full Text] [Related]

  • 10. Overexpression of Solanum habrochaites microRNA319d (sha-miR319d) confers chilling and heat stress tolerance in tomato (S. lycopersicum).
    Shi X, Jiang F, Wen J, Wu Z.
    BMC Plant Biol; 2019 May 23; 19(1):214. PubMed ID: 31122194
    [Abstract] [Full Text] [Related]

  • 11. Selection of tomato landraces with high fruit yield and nutritional quality under elevated temperatures.
    Scarano A, Olivieri F, Gerardi C, Liso M, Chiesa M, Chieppa M, Frusciante L, Barone A, Santino A, Rigano MM.
    J Sci Food Agric; 2020 Apr 23; 100(6):2791-2799. PubMed ID: 32022274
    [Abstract] [Full Text] [Related]

  • 12. Genotype by watering regime interaction in cultivated tomato: lessons from linkage mapping and gene expression.
    Albert E, Gricourt J, Bertin N, Bonnefoi J, Pateyron S, Tamby JP, Bitton F, Causse M.
    Theor Appl Genet; 2016 Feb 23; 129(2):395-418. PubMed ID: 26582510
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Elucidating the Role of SlBBX31 in Plant Growth and Heat-Stress Resistance in Tomato.
    Wang Q, Zhan X.
    Int J Mol Sci; 2024 Aug 27; 25(17):. PubMed ID: 39273241
    [Abstract] [Full Text] [Related]

  • 15. Natural variation of physiological traits, molecular markers, and chlorophyll catabolic genes associated with heat tolerance in perennial ryegrass accessions.
    Zhang J, Li H, Jiang Y, Li H, Zhang Z, Xu Z, Xu B, Huang B.
    BMC Plant Biol; 2020 Nov 16; 20(1):520. PubMed ID: 33198630
    [Abstract] [Full Text] [Related]

  • 16. Cultivar-biased regulation of HSFA7 and HSFB4a govern high-temperature tolerance in tomato.
    Rao S, Das JR, Balyan S, Verma R, Mathur S.
    Planta; 2022 Jan 04; 255(2):31. PubMed ID: 34982240
    [Abstract] [Full Text] [Related]

  • 17. High-Throughput Genotyping of Resilient Tomato Landraces to Detect Candidate Genes Involved in the Response to High Temperatures.
    Olivieri F, Calafiore R, Francesca S, Schettini C, Chiaiese P, Rigano MM, Barone A.
    Genes (Basel); 2020 Jun 07; 11(6):. PubMed ID: 32517343
    [Abstract] [Full Text] [Related]

  • 18. Expression of genes for the biosynthesis of compatible solutes during pollen development under heat stress in tomato (Solanum lycopersicum).
    Sangu E, Tibazarwa FI, Nyomora A, Symonds RC.
    J Plant Physiol; 2015 Apr 15; 178():10-6. PubMed ID: 25747289
    [Abstract] [Full Text] [Related]

  • 19. Natural variation in HsfA2 pre-mRNA splicing is associated with changes in thermotolerance during tomato domestication.
    Hu Y, Mesihovic A, Jiménez-Gómez JM, Röth S, Gebhardt P, Bublak D, Bovy A, Scharf KD, Schleiff E, Fragkostefanakis S.
    New Phytol; 2020 Feb 15; 225(3):1297-1310. PubMed ID: 31556121
    [Abstract] [Full Text] [Related]

  • 20. Evaluation of the genotype, environment and their interaction on carotenoid and ascorbic acid accumulation in tomato germplasm.
    Roselló S, Adalid AM, Cebolla-Cornejo J, Nuez F.
    J Sci Food Agric; 2011 Apr 15; 91(6):1014-21. PubMed ID: 21328350
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.