These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


169 related items for PubMed ID: 34294370

  • 1. Resolvins as potential candidates for the treatment of major depressive disorder.
    Deyama S, Minami M, Kaneda K.
    J Pharmacol Sci; 2021 Sep; 147(1):33-39. PubMed ID: 34294370
    [Abstract] [Full Text] [Related]

  • 2. [Elucidation of the Mechanisms Underlying the Rapid Antidepressant Actions of Ketamine and Search for Possible Candidates for Novel Rapid-acting Antidepressants].
    Deyama S.
    Yakugaku Zasshi; 2023 Sep; 143(9):713-720. PubMed ID: 37661437
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Resolution of depression: antidepressant actions of resolvins.
    Deyama S, Kaneda K, Minami M.
    Neurosci Res; 2022 Oct 19. PubMed ID: 36272561
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Intranasal Administration of Resolvin E1 Produces Antidepressant-Like Effects via BDNF/VEGF-mTORC1 Signaling in the Medial Prefrontal Cortex.
    Deyama S, Aoki S, Sugie R, Fukuda H, Shuto S, Minami M, Kaneda K.
    Neurotherapeutics; 2023 Mar 19; 20(2):484-501. PubMed ID: 36622634
    [Abstract] [Full Text] [Related]

  • 8. N-Methyl-D-aspartate receptor antagonist d-methadone produces rapid, mTORC1-dependent antidepressant effects.
    Fogaça MV, Fukumoto K, Franklin T, Liu RJ, Duman CH, Vitolo OV, Duman RS.
    Neuropsychopharmacology; 2019 Dec 19; 44(13):2230-2238. PubMed ID: 31454827
    [Abstract] [Full Text] [Related]

  • 9. Antidepressant-like effects of tomatidine and tomatine, steroidal alkaloids from unripe tomatoes, via activation of mTORC1 in the medial prefrontal cortex in lipopolysaccharide-induced depression model mice.
    Deyama S, Sugie R, Tabata M, Kaneda K.
    Nutr Neurosci; 2024 Aug 19; 27(8):795-808. PubMed ID: 37704369
    [Abstract] [Full Text] [Related]

  • 10. Resolvin D1 and D2 Reverse Lipopolysaccharide-Induced Depression-Like Behaviors Through the mTORC1 Signaling Pathway.
    Deyama S, Ishikawa Y, Yoshikawa K, Shimoda K, Ide S, Satoh M, Minami M.
    Int J Neuropsychopharmacol; 2017 Jul 01; 20(7):575-584. PubMed ID: 28419244
    [Abstract] [Full Text] [Related]

  • 11. Role of mTOR1 signaling in the antidepressant effects of ketamine and the potential of mTORC1 activators as novel antidepressants.
    Kato T.
    Neuropharmacology; 2023 Feb 01; 223():109325. PubMed ID: 36334763
    [Abstract] [Full Text] [Related]

  • 12. Activity-dependent brain-derived neurotrophic factor signaling is required for the antidepressant actions of (2R,6R)-hydroxynorketamine.
    Fukumoto K, Fogaça MV, Liu RJ, Duman C, Kato T, Li XY, Duman RS.
    Proc Natl Acad Sci U S A; 2019 Jan 02; 116(1):297-302. PubMed ID: 30559184
    [Abstract] [Full Text] [Related]

  • 13. The antidepressant-like effect of resolvin E1 in repeated prednisolone-induced depression model mice.
    Aoki S, Deyama S, Sugie R, Ishimura K, Fukuda H, Shuto S, Minami M, Kaneda K.
    Behav Brain Res; 2022 Feb 10; 418():113676. PubMed ID: 34801580
    [Abstract] [Full Text] [Related]

  • 14. Rapid and sustained antidepressant effects of resolvin D1 and D2 in a chronic unpredictable stress model.
    Ishikawa Y, Deyama S, Shimoda K, Yoshikawa K, Ide S, Satoh M, Minami M.
    Behav Brain Res; 2017 Aug 14; 332():233-236. PubMed ID: 28610917
    [Abstract] [Full Text] [Related]

  • 15. Resolvin D2 is a potent endogenous inhibitor for transient receptor potential subtype V1/A1, inflammatory pain, and spinal cord synaptic plasticity in mice: distinct roles of resolvin D1, D2, and E1.
    Park CK, Xu ZZ, Liu T, Lü N, Serhan CN, Ji RR.
    J Neurosci; 2011 Dec 14; 31(50):18433-8. PubMed ID: 22171045
    [Abstract] [Full Text] [Related]

  • 16. Resolvins RvE1 and RvD1 attenuate inflammatory pain via central and peripheral actions.
    Xu ZZ, Zhang L, Liu T, Park JY, Berta T, Yang R, Serhan CN, Ji RR.
    Nat Med; 2010 May 14; 16(5):592-7, 1p following 597. PubMed ID: 20383154
    [Abstract] [Full Text] [Related]

  • 17. A review of ketamine in affective disorders: current evidence of clinical efficacy, limitations of use and pre-clinical evidence on proposed mechanisms of action.
    Naughton M, Clarke G, O'Leary OF, Cryan JF, Dinan TG.
    J Affect Disord; 2014 Mar 14; 156():24-35. PubMed ID: 24388038
    [Abstract] [Full Text] [Related]

  • 18. Molecular and Cellular Mechanisms of Rapid-Acting Antidepressants Ketamine and Scopolamine.
    Wohleb ES, Gerhard D, Thomas A, Duman RS.
    Curr Neuropharmacol; 2017 Mar 14; 15(1):11-20. PubMed ID: 26955968
    [Abstract] [Full Text] [Related]

  • 19. Anti-angiogenesis effect of the novel anti-inflammatory and pro-resolving lipid mediators.
    Jin Y, Arita M, Zhang Q, Saban DR, Chauhan SK, Chiang N, Serhan CN, Dana R.
    Invest Ophthalmol Vis Sci; 2009 Oct 14; 50(10):4743-52. PubMed ID: 19407006
    [Abstract] [Full Text] [Related]

  • 20. Resolvins AT-D1 and E1 differentially impact functional outcome, post-traumatic sleep, and microglial activation following diffuse brain injury in the mouse.
    Harrison JL, Rowe RK, Ellis TW, Yee NS, O'Hara BF, Adelson PD, Lifshitz J.
    Brain Behav Immun; 2015 Jul 14; 47():131-40. PubMed ID: 25585137
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.