These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


157 related items for PubMed ID: 34298183

  • 1. Fulvic acid enhances drought resistance in tea plants by regulating the starch and sucrose metabolism and certain secondary metabolism.
    Qiu C, Sun J, Shen J, Zhang S, Ding Y, Gai Z, Fan K, Song L, Chen B, Ding Z, Wang Y.
    J Proteomics; 2021 Sep 15; 247():104337. PubMed ID: 34298183
    [Abstract] [Full Text] [Related]

  • 2. Fulvic acid ameliorates drought stress-induced damage in tea plants by regulating the ascorbate metabolism and flavonoids biosynthesis.
    Sun J, Qiu C, Ding Y, Wang Y, Sun L, Fan K, Gai Z, Dong G, Wang J, Li X, Song L, Ding Z.
    BMC Genomics; 2020 Jun 18; 21(1):411. PubMed ID: 32552744
    [Abstract] [Full Text] [Related]

  • 3. Proteomics and phosphoproteomics reveal the different drought-responsive mechanisms of priming with (Z)-3-hexenyl acetate in two tea cultivars.
    Wang S, Gu H, Chen S, Li Y, Shen J, Wang Y, Ding Z.
    J Proteomics; 2023 Oct 30; 289():105010. PubMed ID: 37797878
    [Abstract] [Full Text] [Related]

  • 4. Proteomic analysis of Camellia sinensis (L.) reveals a synergistic network in the response to drought stress and recovery.
    Wang Y, Fan K, Wang J, Ding ZT, Wang H, Bi CH, Zhang YW, Sun HW.
    J Plant Physiol; 2017 Dec 30; 219():91-99. PubMed ID: 29096085
    [Abstract] [Full Text] [Related]

  • 5. Multilayer omics landscape analyses reveal the regulatory responses of tea plants to drought stress.
    Yue C, Cao H, Zhang S, Shen G, Wu Z, Yuan L, Luo L, Zeng L.
    Int J Biol Macromol; 2023 Dec 31; 253(Pt 1):126582. PubMed ID: 37652332
    [Abstract] [Full Text] [Related]

  • 6. Haplotype-Resolution Transcriptome Analysis Reveals Important Responsive Gene Modules and Allele-Specific Expression Contributions under Continuous Salt and Drought in Camellia sinensis.
    Zhang Q, Ye Z, Wang Y, Zhang X, Kong W.
    Genes (Basel); 2023 Jul 08; 14(7):. PubMed ID: 37510320
    [Abstract] [Full Text] [Related]

  • 7. A Comparative Proteomic Analysis of the Buds and the Young Expanding Leaves of the Tea Plant (Camellia sinensis L.).
    Li Q, Li J, Liu S, Huang J, Lin H, Wang K, Cheng X, Liu Z.
    Int J Mol Sci; 2015 Jun 18; 16(6):14007-38. PubMed ID: 26096006
    [Abstract] [Full Text] [Related]

  • 8. CsREV-CsTCP4-CsVND7 module shapes xylem patterns differentially between stem and leaf to enhance tea plant tolerance to drought.
    Li J, Ren J, Lei X, Fan W, Tang L, Zhang Q, Bao Z, Zhou W, Bai J, Zhang Y, Gong C.
    Cell Rep; 2024 Apr 23; 43(4):113987. PubMed ID: 38517888
    [Abstract] [Full Text] [Related]

  • 9. Global Ubiquitome Profiling Revealed the Roles of Ubiquitinated Proteins in Metabolic Pathways of Tea Leaves in Responding to Drought Stress.
    Xie H, Wang Y, Ding Y, Qiu C, Sun L, Gai Z, Gu H, Ding Z.
    Sci Rep; 2019 Mar 12; 9(1):4286. PubMed ID: 30862833
    [Abstract] [Full Text] [Related]

  • 10. Transcriptomic responses to drought stress in Polygonatum kingianum tuber.
    Qian H, Xu Z, Cong K, Zhu X, Zhang L, Wang J, Wei J, Ji P.
    BMC Plant Biol; 2021 Nov 15; 21(1):537. PubMed ID: 34781887
    [Abstract] [Full Text] [Related]

  • 11. Identification of drought-responsive miRNAs and physiological characterization of tea plant (Camellia sinensis L.) under drought stress.
    Guo Y, Zhao S, Zhu C, Chang X, Yue C, Wang Z, Lin Y, Lai Z.
    BMC Plant Biol; 2017 Nov 21; 17(1):211. PubMed ID: 29157225
    [Abstract] [Full Text] [Related]

  • 12. Expression patterns of alpha-amylase and beta-amylase genes provide insights into the molecular mechanisms underlying the responses of tea plants (Camellia sinensis) to stress and postharvest processing treatments.
    Yue C, Cao H, Lin H, Hu J, Ye Y, Li J, Hao Z, Hao X, Sun Y, Yang Y, Wang X.
    Planta; 2019 Jul 21; 250(1):281-298. PubMed ID: 31025197
    [Abstract] [Full Text] [Related]

  • 13. Comparative transcriptomic analysis of contrasting hybrid cultivars reveal key drought-responsive genes and metabolic pathways regulating drought stress tolerance in maize at various stages.
    Liu S, Zenda T, Li J, Wang Y, Liu X, Duan H.
    PLoS One; 2020 Jul 21; 15(10):e0240468. PubMed ID: 33057352
    [Abstract] [Full Text] [Related]

  • 14. (Z)-3-Hexenol integrates drought and cold stress signaling by activating abscisic acid glucosylation in tea plants.
    Jin J, Zhao M, Jing T, Wang J, Lu M, Pan Y, Du W, Zhao C, Bao Z, Zhao W, Tang X, Schwab W, Song C.
    Plant Physiol; 2023 Sep 22; 193(2):1491-1507. PubMed ID: 37315209
    [Abstract] [Full Text] [Related]

  • 15. CsMOF1-guided regulation of drought-induced theanine biosynthesis in Camellia sinensis.
    Chen F, He Y, Yao X, Zho B, Tian S, Yin J, Lu L.
    Int J Biol Macromol; 2024 May 22; 268(Pt 2):131725. PubMed ID: 38677697
    [Abstract] [Full Text] [Related]

  • 16. Accumulation of Galactinol and ABA Is Involved in Exogenous EBR-Induced Drought Tolerance in Tea Plants.
    Zhang Y, Xiao Y, Zhang Y, Dong Y, Liu Y, Liu L, Wan S, He J, Yu Y.
    J Agric Food Chem; 2022 Oct 19; 70(41):13391-13403. PubMed ID: 36218024
    [Abstract] [Full Text] [Related]

  • 17. Comparative transcriptomic and proteomic analysis of nutritional quality-related molecular mechanisms of 'Qianmei 419' and 'Qianfu 4' varieties of Camellia sinensis.
    Yao X, Qi Y, Chen H, Zhang B, Chen Z, Lu L.
    Gene; 2023 May 20; 865():147329. PubMed ID: 36870427
    [Abstract] [Full Text] [Related]

  • 18. Regulation of color transition in purple tea (Camellia sinensis).
    Kumari M, Thakur S, Kumar A, Joshi R, Kumar P, Shankar R, Kumar R.
    Planta; 2019 Dec 18; 251(1):35. PubMed ID: 31853722
    [Abstract] [Full Text] [Related]

  • 19. Identification and Analysis of Genes Involved in Auxin, Abscisic Acid, Gibberellin, and Brassinosteroid Metabolisms Under Drought Stress in Tender Shoots of Tea Plants.
    Li H, Teng RM, Liu JX, Yang RY, Yang YZ, Lin SJ, Han MH, Liu JY, Zhuang J.
    DNA Cell Biol; 2019 Nov 18; 38(11):1292-1302. PubMed ID: 31560570
    [Abstract] [Full Text] [Related]

  • 20. Biochemical and transcriptomic analyses reveal different metabolite biosynthesis profiles among three color and developmental stages in 'Anji Baicha' (Camellia sinensis).
    Li CF, Xu YX, Ma JQ, Jin JQ, Huang DJ, Yao MZ, Ma CL, Chen L.
    BMC Plant Biol; 2016 Sep 08; 16(1):195. PubMed ID: 27609021
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.