These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Ritonavir may inhibit exoribonuclease activity of nsp14 from the SARS-CoV-2 virus and potentiate the activity of chain terminating drugs. Narayanan N, Nair DT. Int J Biol Macromol; 2021 Jan 31; 168():272-278. PubMed ID: 33309661 [Abstract] [Full Text] [Related]
23. 3-(Adenosylthio)benzoic Acid Derivatives as SARS-CoV-2 Nsp14 Methyltransferase Inhibitors. Bobileva O, Bobrovs R, Sirma EE, Kanepe I, Bula AL, Patetko L, Ramata-Stunda A, Grinberga S, Jirgensons A, Jaudzems K. Molecules; 2023 Jan 12; 28(2):. PubMed ID: 36677825 [Abstract] [Full Text] [Related]
24. Facile access to 4'-(N-acylsulfonamide) modified nucleosides and evaluation of their inhibitory activity against SARS-CoV-2 RNA cap N7-guanine-methyltransferase nsp14. Amador R, Delpal A, Canard B, Vasseur JJ, Decroly E, Debart F, Clavé G, Smietana M. Org Biomol Chem; 2022 Oct 05; 20(38):7582-7586. PubMed ID: 36156055 [Abstract] [Full Text] [Related]
25. The Enzymatic Activity of the nsp14 Exoribonuclease Is Critical for Replication of MERS-CoV and SARS-CoV-2. Ogando NS, Zevenhoven-Dobbe JC, van der Meer Y, Bredenbeek PJ, Posthuma CC, Snijder EJ. J Virol; 2020 Nov 09; 94(23):. PubMed ID: 32938769 [Abstract] [Full Text] [Related]
26. New targets for drug design: importance of nsp14/nsp10 complex formation for the 3'-5' exoribonucleolytic activity on SARS-CoV-2. Saramago M, Bárria C, Costa VG, Souza CS, Viegas SC, Domingues S, Lousa D, Soares CM, Arraiano CM, Matos RG. FEBS J; 2021 Sep 09; 288(17):5130-5147. PubMed ID: 33705595 [Abstract] [Full Text] [Related]
27. The mechanism of RNA capping by SARS-CoV-2. Park GJ, Osinski A, Hernandez G, Eitson JL, Majumdar A, Tonelli M, Henzler-Wildman K, Pawłowski K, Chen Z, Li Y, Schoggins JW, Tagliabracci VS. Nature; 2022 Sep 09; 609(7928):793-800. PubMed ID: 35944563 [Abstract] [Full Text] [Related]
28. Localization of SARS-CoV-2 Capping Enzymes Revealed by an Antibody against the nsp10 Subunit. Horova V, Landova B, Hodek J, Chalupsky K, Krafcikova P, Chalupska D, Duchoslav V, Weber J, Boura E, Klima M. Viruses; 2021 Jul 29; 13(8):. PubMed ID: 34452352 [Abstract] [Full Text] [Related]
29. A High-Throughput Radioactivity-Based Assay for Screening SARS-CoV-2 nsp10-nsp16 Complex. Khalili Yazdi A, Li F, Devkota K, Perveen S, Ghiabi P, Hajian T, Bolotokova A, Vedadi M. SLAS Discov; 2021 Jul 29; 26(6):757-765. PubMed ID: 33874769 [Abstract] [Full Text] [Related]
30. Probing the SAM Binding Site of SARS-CoV-2 Nsp14 In Vitro Using SAM Competitive Inhibitors Guides Developing Selective Bisubstrate Inhibitors. Devkota K, Schapira M, Perveen S, Khalili Yazdi A, Li F, Chau I, Ghiabi P, Hajian T, Loppnau P, Bolotokova A, Satchell KJF, Wang K, Li D, Liu J, Smil D, Luo M, Jin J, Fish PV, Brown PJ, Vedadi M. SLAS Discov; 2021 Oct 29; 26(9):1200-1211. PubMed ID: 34192965 [Abstract] [Full Text] [Related]
33. Mapping major SARS-CoV-2 drug targets and assessment of druggability using computational fragment screening: Identification of an allosteric small-molecule binding site on the Nsp13 helicase. Freidel MR, Armen RS. PLoS One; 2021 Oct 15; 16(2):e0246181. PubMed ID: 33596235 [Abstract] [Full Text] [Related]
34. Approved drugs screening against the nsP1 capping enzyme of Venezuelan equine encephalitis virus using an immuno-based assay. Ferreira-Ramos AS, Li C, Eydoux C, Contreras JM, Morice C, Quérat G, Gigante A, Pérez Pérez MJ, Jung ML, Canard B, Guillemot JC, Decroly E, Coutard B. Antiviral Res; 2019 Mar 15; 163():59-69. PubMed ID: 30639438 [Abstract] [Full Text] [Related]
35. Cheminformatics approach to identify andrographolide derivatives as dual inhibitors of methyltransferases (nsp14 and nsp16) of SARS-CoV-2. Thomas J, Ghosh A, Ranjan S, Satija J. Sci Rep; 2024 Apr 29; 14(1):9801. PubMed ID: 38684706 [Abstract] [Full Text] [Related]
36. Despite the odds: formation of the SARS-CoV-2 methylation complex. Matsuda A, Plewka J, Rawski M, Mourão A, Zajko W, Siebenmorgen T, Kresik L, Lis K, Jones AN, Pachota M, Karim A, Hartman K, Nirwal S, Sonani R, Chykunova Y, Minia I, Mak P, Landthaler M, Nowotny M, Dubin G, Sattler M, Suder P, Popowicz GM, Pyrć K, Czarna A. Nucleic Acids Res; 2024 Jun 24; 52(11):6441-6458. PubMed ID: 38499483 [Abstract] [Full Text] [Related]
37. Coronavirus genomic nsp14-ExoN, structure, role, mechanism, and potential application as a drug target. Tahir M. J Med Virol; 2021 Jul 24; 93(7):4258-4264. PubMed ID: 33837972 [Abstract] [Full Text] [Related]
38. Mutagenesis of S-Adenosyl-l-Methionine-Binding Residues in Coronavirus nsp14 N7-Methyltransferase Demonstrates Differing Requirements for Genome Translation and Resistance to Innate Immunity. Case JB, Ashbrook AW, Dermody TS, Denison MR. J Virol; 2016 Aug 15; 90(16):7248-7256. PubMed ID: 27252528 [Abstract] [Full Text] [Related]
39. Structure-function analysis of severe acute respiratory syndrome coronavirus RNA cap guanine-N7-methyltransferase. Chen Y, Tao J, Sun Y, Wu A, Su C, Gao G, Cai H, Qiu S, Wu Y, Ahola T, Guo D. J Virol; 2013 Jun 15; 87(11):6296-305. PubMed ID: 23536667 [Abstract] [Full Text] [Related]
40. Engineering a Reliable and Convenient SARS-CoV-2 Replicon System for Analysis of Viral RNA Synthesis and Screening of Antiviral Inhibitors. Luo Y, Yu F, Zhou M, Liu Y, Xia B, Zhang X, Liu J, Zhang J, Du Y, Li R, Wu L, Zhang X, Pan T, Guo D, Peng T, Zhang H. mBio; 2021 Jan 19; 12(1):. PubMed ID: 33468688 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]