These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
232 related items for PubMed ID: 34304549
21. Whole Transcriptome Analyses of Apricots and Japanese Plum Fruits after 1-MCP (Ethylene-Inhibitor) and Ethrel (Ethylene-Precursor) Treatments Reveal New Insights into the Physiology of the Ripening Process. Salazar JA, Ruiz D, Zapata P, Martínez-García PJ, Martínez-Gómez P. Int J Mol Sci; 2022 Sep 20; 23(19):. PubMed ID: 36232348 [Abstract] [Full Text] [Related]
22. Hypoxia-responsive ERFs involved in postdeastringency softening of persimmon fruit. Wang MM, Zhu QG, Deng CL, Luo ZR, Sun NJ, Grierson D, Yin XR, Chen KS. Plant Biotechnol J; 2017 Nov 20; 15(11):1409-1419. PubMed ID: 28301712 [Abstract] [Full Text] [Related]
23. Banana ethylene response factors are involved in fruit ripening through their interactions with ethylene biosynthesis genes. Xiao YY, Chen JY, Kuang JF, Shan W, Xie H, Jiang YM, Lu WJ. J Exp Bot; 2013 May 20; 64(8):2499-510. PubMed ID: 23599278 [Abstract] [Full Text] [Related]
24. Transcriptomic and metabolite analyses provided a new sight of 1-MCP on organic acid metabolism in peach during storage. Cai H, Han S, Wang Q, Liu X, Yu Z. J Food Sci; 2023 Aug 20; 88(8):3323-3331. PubMed ID: 37458299 [Abstract] [Full Text] [Related]
25. Interaction between PpERF5 and PpERF7 enhances peach fruit aroma by upregulating PpLOX4 expression. Wang X, Zhang C, Miao Y, Deng L, Zhang B, Meng J, Wang Y, Pan L, Niu L, Liu H, Cui G, Wang Z, Zeng W. Plant Physiol Biochem; 2022 Aug 15; 185():378-389. PubMed ID: 35777129 [Abstract] [Full Text] [Related]
26. On the role of ethylene, auxin and a GOLVEN-like peptide hormone in the regulation of peach ripening. Tadiello A, Ziosi V, Negri AS, Noferini M, Fiori G, Busatto N, Espen L, Costa G, Trainotti L. BMC Plant Biol; 2016 Feb 11; 16():44. PubMed ID: 26863869 [Abstract] [Full Text] [Related]
27. Expression of expansin genes in the pulp and the dehiscence zone of ripening durian (Durio zibethinus) fruit. Palapol Y, Kunyamee S, Thongkhum M, Ketsa S, Ferguson IB, van Doorn WG. J Plant Physiol; 2015 Jun 15; 182():33-9. PubMed ID: 26047070 [Abstract] [Full Text] [Related]
28. Ethylene biosynthesis and response factors are differentially modulated during the interaction of peach petals with Monilinia laxa or Monilinia fructicola. Vall-Llaura N, Giné-Bordonaba J, Usall J, Larrigaudière C, Teixidó N, Torres R. Plant Sci; 2020 Oct 15; 299():110599. PubMed ID: 32900437 [Abstract] [Full Text] [Related]
29. Effects of 1-MCP on chlorophyll degradation pathway-associated genes expression and chloroplast ultrastructure during the peel yellowing of Chinese pear fruits in storage. Cheng Y, Dong Y, Yan H, Ge W, Shen C, Guan J, Liu L, Zhang Y. Food Chem; 2012 Nov 15; 135(2):415-22. PubMed ID: 22868108 [Abstract] [Full Text] [Related]
30. Role of Melatonin in Cell-Wall Disassembly and Chilling Tolerance in Cold-Stored Peach Fruit. Cao S, Bian K, Shi L, Chung HH, Chen W, Yang Z. J Agric Food Chem; 2018 Jun 06; 66(22):5663-5670. PubMed ID: 29781612 [Abstract] [Full Text] [Related]
31. Cinnamyl alcohol dehydrogenases in the mesocarp of ripening fruit of Prunus persica genotypes with different flesh characteristics: changes in activity and protein and transcript levels. Gabotti D, Negrini N, Morgutti S, Nocito FF, Cocucci M. Physiol Plant; 2015 Jul 06; 154(3):329-48. PubMed ID: 25534876 [Abstract] [Full Text] [Related]
32. Genome-wide identification and molecular characterization of the AP2/ERF superfamily members in sand pear (Pyrus pyrifolia). Xu Y, Li X, Yang X, Wassie M, Shi H. BMC Genomics; 2023 Jan 19; 24(1):32. PubMed ID: 36658499 [Abstract] [Full Text] [Related]
33. Characteristics and regulatory pathway of the PrupeSEP1 SEPALLATA gene during ripening and softening in peach fruits. Li J, Li F, Qian M, Han M, Liu H, Zhang D, Ma J, Zhao C. Plant Sci; 2017 Apr 19; 257():63-73. PubMed ID: 28224919 [Abstract] [Full Text] [Related]
34. Transcriptome analysis of Chinese bayberry (Myrica rubra Sieb. et Zucc.) fruit treated with heat and 1-MCP. Shi T, Sun J, Wu X, Weng J, Wang P, Qie H, Huang Y, Wang H, Gao Z. Plant Physiol Biochem; 2018 Dec 19; 133():40-49. PubMed ID: 30390430 [Abstract] [Full Text] [Related]
35. Ethylene-regulation of fruit softening and softening-related genes in peach. Hayama H, Shimada T, Fujii H, Ito A, Kashimura Y. J Exp Bot; 2006 Dec 19; 57(15):4071-7. PubMed ID: 17077183 [Abstract] [Full Text] [Related]
36. Reciprocity between abscisic acid and ethylene at the onset of berry ripening and after harvest. Sun L, Zhang M, Ren J, Qi J, Zhang G, Leng P. BMC Plant Biol; 2010 Nov 22; 10():257. PubMed ID: 21092180 [Abstract] [Full Text] [Related]
37. Comparative Transcriptome Profiling in a Segregating Peach Population with Contrasting Juiciness Phenotypes. Del Pozo T, Miranda S, Latorre M, Olivares F, Pavez L, Gutiérrez R, Maldonado J, Hinrichsen P, Defilippi BG, Orellana A, González M. J Agric Food Chem; 2019 Feb 06; 67(5):1598-1607. PubMed ID: 30632375 [Abstract] [Full Text] [Related]
38. Transcriptional regulatory networks controlling woolliness in peach in response to preharvest gibberellin application and cold storage. Pegoraro C, Tadiello A, Girardi CL, Chaves FC, Quecini V, de Oliveira AC, Trainotti L, Rombaldi CV. BMC Plant Biol; 2015 Nov 18; 15():279. PubMed ID: 26582034 [Abstract] [Full Text] [Related]
39. Genome-wide analysis of the AP2/ERF superfamily in peach (Prunus persica). Zhang CH, Shangguan LF, Ma RJ, Sun X, Tao R, Guo L, Korir NK, Yu ML. Genet Mol Res; 2012 Oct 17; 11(4):4789-809. PubMed ID: 23096924 [Abstract] [Full Text] [Related]
40. Transcriptome analysis unravels an ethylene response factor involved in regulating fruit ripening in pear. Hao PP, Wang GM, Cheng HY, Ke YQ, Qi KJ, Gu C, Zhang SL. Physiol Plant; 2018 May 17; 163(1):124-135. PubMed ID: 29148054 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]