These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


220 related items for PubMed ID: 34314299

  • 21. Characterization of two types of termination signal for bacteriophage T7 RNA polymerase.
    Macdonald LE, Durbin RK, Dunn JJ, McAllister WT.
    J Mol Biol; 1994 Apr 29; 238(2):145-58. PubMed ID: 8158645
    [Abstract] [Full Text] [Related]

  • 22. Structural basis of transcription inhibition by the DNA mimic protein Ocr of bacteriophage T7.
    Ye F, Kotta-Loizou I, Jovanovic M, Liu X, Dryden DT, Buck M, Zhang X.
    Elife; 2020 Feb 10; 9():. PubMed ID: 32039758
    [Abstract] [Full Text] [Related]

  • 23. On the mechanism of inhibition of phage T7 RNA polymerase by lac repressor.
    Lopez PJ, Guillerez J, Sousa R, Dreyfus M.
    J Mol Biol; 1998 Mar 13; 276(5):861-75. PubMed ID: 9566192
    [Abstract] [Full Text] [Related]

  • 24. Pausing and termination by bacteriophage T7 RNA polymerase.
    Lyakhov DL, He B, Zhang X, Studier FW, Dunn JJ, McAllister WT.
    J Mol Biol; 1998 Jul 10; 280(2):201-13. PubMed ID: 9654445
    [Abstract] [Full Text] [Related]

  • 25. Mechanisms by which T7 lysozyme specifically regulates T7 RNA polymerase during different phases of transcription.
    Huang J, Villemain J, Padilla R, Sousa R.
    J Mol Biol; 1999 Oct 29; 293(3):457-75. PubMed ID: 10543943
    [Abstract] [Full Text] [Related]

  • 26. Construction of synthetic T7 RNA polymerase expression systems.
    Kar S, Ellington AD.
    Methods; 2018 Jul 01; 143():110-120. PubMed ID: 29518499
    [Abstract] [Full Text] [Related]

  • 27. The histone-like protein HU does not obstruct movement of T7 RNA polymerase in Escherichia coli cells but stimulates its activity.
    Morales P, Rouviere-Yaniv J, Dreyfus M.
    J Bacteriol; 2002 Mar 01; 184(6):1565-70. PubMed ID: 11872707
    [Abstract] [Full Text] [Related]

  • 28. Host RNA polymerase inhibitors encoded by ϕKMV-like phages of Pseudomonas.
    Klimuk E, Akulenko N, Makarova KS, Ceyssens PJ, Volchenkov I, Lavigne R, Severinov K.
    Virology; 2013 Feb 05; 436(1):67-74. PubMed ID: 23127595
    [Abstract] [Full Text] [Related]

  • 29. Transcriptional fidelities of human mitochondrial POLRMT, yeast mitochondrial Rpo41, and phage T7 single-subunit RNA polymerases.
    Sultana S, Solotchi M, Ramachandran A, Patel SS.
    J Biol Chem; 2017 Nov 03; 292(44):18145-18160. PubMed ID: 28882896
    [Abstract] [Full Text] [Related]

  • 30. Effects of substitutions in a conserved DX(2)GR sequence motif, found in many DNA-dependent nucleotide polymerases, on transcription by T7 RNA polymerase.
    Imburgio D, Anikin M, McAllister WT.
    J Mol Biol; 2002 May 24; 319(1):37-51. PubMed ID: 12051935
    [Abstract] [Full Text] [Related]

  • 31. Substitutions in the Escherichia coli RNA polymerase inhibitor T7 Gp2 that allow inhibition of transcription when the primary interaction interface between Gp2 and RNA polymerase becomes compromised.
    Shadrin A, Sheppard C, Severinov K, Matthews S, Wigneshweraraj S.
    Microbiology (Reading); 2012 Nov 24; 158(Pt 11):2753-2764. PubMed ID: 22977089
    [Abstract] [Full Text] [Related]

  • 32. A system for the continuous directed evolution of biomolecules.
    Esvelt KM, Carlson JC, Liu DR.
    Nature; 2011 Apr 28; 472(7344):499-503. PubMed ID: 21478873
    [Abstract] [Full Text] [Related]

  • 33. The structure of a transcribing T7 RNA polymerase in transition from initiation to elongation.
    Durniak KJ, Bailey S, Steitz TA.
    Science; 2008 Oct 24; 322(5901):553-7. PubMed ID: 18948533
    [Abstract] [Full Text] [Related]

  • 34. Non-programmed transcriptional frameshifting is common and highly RNA polymerase type-dependent.
    Koscielniak D, Wons E, Wilkowska K, Sektas M.
    Microb Cell Fact; 2018 Nov 24; 17(1):184. PubMed ID: 30474557
    [Abstract] [Full Text] [Related]

  • 35. A non-bacterial transcription factor inhibits bacterial transcription by a multipronged mechanism.
    Sheppard C, James E, Barton G, Matthews S, Severinov K, Wigneshweraraj S.
    RNA Biol; 2013 Apr 24; 10(4):495-501. PubMed ID: 23558648
    [Abstract] [Full Text] [Related]

  • 36. Promoter binding, initiation, and elongation by bacteriophage T7 RNA polymerase. A single-molecule view of the transcription cycle.
    Skinner GM, Baumann CG, Quinn DM, Molloy JE, Hoggett JG.
    J Biol Chem; 2004 Jan 30; 279(5):3239-44. PubMed ID: 14597619
    [Abstract] [Full Text] [Related]

  • 37. Strategies to Reduce Promoter-Independent Transcription of DNA Nanostructures and Strand Displacement Complexes.
    Schaffter SW, Kengmana E, Fern J, Byrne SR, Schulman R.
    ACS Synth Biol; 2024 Jul 19; 13(7):1964-1977. PubMed ID: 38885464
    [Abstract] [Full Text] [Related]

  • 38. Switching promotor recognition of phage RNA polymerase in silico along lab-directed evolution path.
    E C, Dai L, Yu J.
    Biophys J; 2022 Feb 15; 121(4):582-595. PubMed ID: 35031277
    [Abstract] [Full Text] [Related]

  • 39. Structural-functional analysis of bacteriophage T7 RNA polymerase.
    Tunitskaya VL, Kochetkov SN.
    Biochemistry (Mosc); 2002 Oct 15; 67(10):1124-35. PubMed ID: 12460110
    [Abstract] [Full Text] [Related]

  • 40. Psychrophilic phage VSW-3 RNA polymerase reduces both terminal and full-length dsRNA byproducts in in vitro transcription.
    Xia H, Yu B, Jiang Y, Cheng R, Lu X, Wu H, Zhu B.
    RNA Biol; 2022 Jan 15; 19(1):1130-1142. PubMed ID: 36299232
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 11.