These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


198 related items for PubMed ID: 34323037

  • 1. [Biofilm Eradication Four-Step Strategy: Study of Using Self-Assembled Azithromycin/Rhamnolipid Nanoparticles for Removing Pseudomonas aeruginosa Biofilm].
    Dong YT, Li PY, Sun YY, Rao YQ, Yu SH, Hu HY.
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2021 Jul; 52(4):598-604. PubMed ID: 34323037
    [Abstract] [Full Text] [Related]

  • 2. Rhamnolipid Micelles Assist Azithromycin in Efficiently Disrupting Staphylococcus aureus Biofilms and Impeding Their Re-Formation.
    Lin S, Li X, Zhang Y, Zhang W, Shu G, Li H, Xu F, Lin J, Fu H.
    Int J Nanomedicine; 2023 Jul; 18():7403-7415. PubMed ID: 38090363
    [Abstract] [Full Text] [Related]

  • 3. Microenvironment responsive charge-switchable nanoparticles act on biofilm eradication and virulence inhibition for chronic lung infection treatment.
    Li P, Pan J, Dong Y, Sun Y, Wang Y, Liao K, Chen Y, Deng X, Yu S, Hu H.
    J Control Release; 2024 Jan; 365():219-235. PubMed ID: 37992874
    [Abstract] [Full Text] [Related]

  • 4. Hypoxia-sensitive adjuvant loaded liposomes enhance the antimicrobial activity of azithromycin via phospholipase-triggered releasing for Pseudomonas aeruginosa biofilms eradication.
    Rao Y, Sun Y, Li P, Xu M, Chen X, Wang Y, Chen Y, Deng X, Yu S, Hu H.
    Int J Pharm; 2022 Jul 25; 623():121910. PubMed ID: 35710071
    [Abstract] [Full Text] [Related]

  • 5. Improved effect of amikacin-loaded poly(D,L-lactide-co-glycolide) nanoparticles against planktonic and biofilm cells of Pseudomonas aeruginosa.
    Sabaeifard P, Abdi-Ali A, Gamazo C, Irache JM, Soudi MR.
    J Med Microbiol; 2017 Mar 25; 66(2):137-148. PubMed ID: 28260589
    [Abstract] [Full Text] [Related]

  • 6. Rhamnolipid-involved antibiotics combinations improve the eradication of Helicobacter pylori biofilm in vitro: A comparison with conventional triple therapy.
    Chen X, Li P, Shen Y, Zou Y, Yuan G, Hu H.
    Microb Pathog; 2019 Jun 25; 131():112-119. PubMed ID: 30951818
    [Abstract] [Full Text] [Related]

  • 7. Mucus penetration enhanced lipid polymer nanoparticles improve the eradication rate of Helicobacter pylori biofilm.
    Li P, Chen X, Shen Y, Li H, Zou Y, Yuan G, Hu P, Hu H.
    J Control Release; 2019 Apr 28; 300():52-63. PubMed ID: 30825476
    [Abstract] [Full Text] [Related]

  • 8. Preparation and evaluation of lipid polymer nanoparticles for eradicating H. pylori biofilm and impairing antibacterial resistance in vitro.
    Cai J, Huang H, Song W, Hu H, Chen J, Zhang L, Li P, Wu R, Wu C.
    Int J Pharm; 2015 Nov 30; 495(2):728-37. PubMed ID: 26417849
    [Abstract] [Full Text] [Related]

  • 9. Antibacterial self-assembled nanodrugs composed of berberine derivatives and rhamnolipids against Helicobacter pylori.
    Shen Y, Zou Y, Chen X, Li P, Rao Y, Yang X, Sun Y, Hu H.
    J Control Release; 2020 Dec 10; 328():575-586. PubMed ID: 32946873
    [Abstract] [Full Text] [Related]

  • 10. Rhamnolipid-Coated Iron Oxide Nanoparticles as a Novel Multitarget Candidate against Major Foodborne E. coli Serotypes and Methicillin-Resistant S. aureus.
    Sharaf M, Sewid AH, Hamouda HI, Elharrif MG, El-Demerdash AS, Alharthi A, Hashim N, Hamad AA, Selim S, Alkhalifah DHM, Hozzein WN, Abdalla M, Saber T.
    Microbiol Spectr; 2022 Aug 31; 10(4):e0025022. PubMed ID: 35852338
    [Abstract] [Full Text] [Related]

  • 11. Attenuation of Pseudomonas aeruginosa biofilm formation by Vitexin: A combinatorial study with azithromycin and gentamicin.
    Das MC, Sandhu P, Gupta P, Rudrapaul P, De UC, Tribedi P, Akhter Y, Bhattacharjee S.
    Sci Rep; 2016 Mar 22; 6():23347. PubMed ID: 27000525
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Azithromycin-liposomes as a novel approach for localized therapy of cervicovaginal bacterial infections.
    Vanić Ž, Rukavina Z, Manner S, Fallarero A, Uzelac L, Kralj M, Amidžić Klarić D, Bogdanov A, Raffai T, Virok DP, Filipović-Grčić J, Škalko-Basnet N.
    Int J Nanomedicine; 2019 Mar 22; 14():5957-5976. PubMed ID: 31440052
    [Abstract] [Full Text] [Related]

  • 14. Evaluation of Combined Ciprofloxacin and azithromycin free and nano formulations to control biofilm producing Pseudomonas aeruginosa isolated from burn wounds.
    Raouf M, Essa S, El Achy S, Essawy M, Rafik S, Baddour M.
    Indian J Med Microbiol; 2021 Jan 22; 39(1):81-87. PubMed ID: 33460732
    [Abstract] [Full Text] [Related]

  • 15. Activity of Sodium Lauryl Sulfate, Rhamnolipids, and N-Acetylcysteine Against Biofilms of Five Common Pathogens.
    Shen Y, Li P, Chen X, Zou Y, Li H, Yuan G, Hu H.
    Microb Drug Resist; 2020 Mar 22; 26(3):290-299. PubMed ID: 31211651
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Sulfur-Functionalized Fullerene Nanoparticle as an Inhibitor and Eliminator Agent on Pseudomonas aeruginosa Biofilm and Expression of toxA Gene.
    Darabpour E, Doroodmand MM, Halabian R, Imani Fooladi AA.
    Microb Drug Resist; 2019 May 22; 25(4):594-602. PubMed ID: 30461338
    [Abstract] [Full Text] [Related]

  • 18. Azithromycin and ciprofloxacin: a possible synergistic combination against Pseudomonas aeruginosa biofilm-associated urinary tract infections.
    Saini H, Chhibber S, Harjai K.
    Int J Antimicrob Agents; 2015 Apr 22; 45(4):359-67. PubMed ID: 25604277
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.