These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


217 related items for PubMed ID: 3432375

  • 1. Disruption of muscle energy metabolism due to intense ischaemic exercise: a 31P NMR study in rats.
    Authier B, Albrand JP, Decorps M, Reutenauer H, Rossi A.
    Physiol Chem Phys Med NMR; 1987; 19(2):83-93. PubMed ID: 3432375
    [Abstract] [Full Text] [Related]

  • 2. Prediction by 31P-NMR of the irreversibility of ischemic injury in rat skeletal muscle after ligation of the femoral artery.
    Authier B, Rossi A, Albrand JP, Decorps M.
    Muscle Nerve; 1989 Jan; 12(1):20-5. PubMed ID: 2546075
    [Abstract] [Full Text] [Related]

  • 3. [Effects of acute arterial occlusion on muscle energy metabolism. An experimental model using phosphorus NMR spectroscopy in the rat].
    Authier B, Rossi A, Albrand JP, Decorps M, Reutenauer H.
    J Mal Vasc; 1987 Jan; 12(4):323-8. PubMed ID: 3694056
    [Abstract] [Full Text] [Related]

  • 4. Phosphorus nuclear magnetic resonance: a non-invasive technique for the study of muscle bioenergetics during exercise.
    Sapega AA, Sokolow DP, Graham TJ, Chance B.
    Med Sci Sports Exerc; 1987 Aug; 19(4):410-20. PubMed ID: 3309542
    [Abstract] [Full Text] [Related]

  • 5. Heterogeneous metabolic changes in the calf muscle of the rat during ischaemia-reperfusion: in vivo analysis by 31P nuclear magnetic resonance chemical shift imaging and 1H magnetic resonance imaging.
    Morikawa S, Inubushi T, Kito K.
    Cardiovasc Surg; 1993 Aug; 1(4):337-42. PubMed ID: 8076056
    [Abstract] [Full Text] [Related]

  • 6. 31P-NMR studies on an animal model of human defective muscle glycolysis.
    Kuwabara T, Yuasa T, Miyatake T.
    Muscle Nerve; 1986 Feb; 9(2):138-43. PubMed ID: 3951487
    [Abstract] [Full Text] [Related]

  • 7. Effect of training on the calf muscle energy metabolism. A 31P-NMR study on four elite downhill skiers challenged with a standardized exercise protocol.
    Laurent D, Bernús G, Alonso J, Lebas JF, Arús C, González de Suso JM, Rossi A.
    Int J Sports Med; 1992 May; 13(4):313-8. PubMed ID: 1521945
    [Abstract] [Full Text] [Related]

  • 8. Bioenergetics of intact human muscle. A 31P nuclear magnetic resonance study.
    Taylor DJ, Bore PJ, Styles P, Gadian DG, Radda GK.
    Mol Biol Med; 1983 Jul; 1(1):77-94. PubMed ID: 6679873
    [Abstract] [Full Text] [Related]

  • 9. Correlation of function and energy metabolism in rat ischemic skeletal muscle by 31P-NMR spectroscopy: effects of torbafylline.
    Koch H, Okyayuz-Baklouti I, Norris D, Kogler H, Leibfritz D.
    J Med; 1993 Jul; 24(1):47-66. PubMed ID: 8501403
    [Abstract] [Full Text] [Related]

  • 10. Phosphorus nuclear magnetic resonance: a non-invasive technique for the study of muscle bioenergetics during exercise.
    Sapega AA, Sokolow DP, Graham TJ, Chance B.
    Med Sci Sports Exerc; 1993 Jun; 25(6):656-66. PubMed ID: 8321101
    [Abstract] [Full Text] [Related]

  • 11. Inorganic phosphate is transported into mitochondria in the absence of ATP biosynthesis: an in vivo 31P NMR study in the human skeletal muscle.
    Iotti S, Lodi R, Gottardi G, Zaniol P, Barbiroli B.
    Biochem Biophys Res Commun; 1996 Aug 05; 225(1):191-4. PubMed ID: 8769116
    [Abstract] [Full Text] [Related]

  • 12. Phosphorus metabolites in different muscles of the rat leg by 31P image-selected in vivo spectroscopy.
    Madhu B, Lagerwall K, Soussi B.
    NMR Biomed; 1996 Dec 05; 9(8):327-32. PubMed ID: 9176886
    [Abstract] [Full Text] [Related]

  • 13. Effect of pentoxifylline on the ischemic rat kidney monitored by 31P NMR spectroscopy in vivo.
    Ellermann J, Gründer W, Keller T.
    Biomed Biochim Acta; 1988 Dec 05; 47(6):515-21. PubMed ID: 3240301
    [Abstract] [Full Text] [Related]

  • 14. In vivo 31P-NMR studies on energy metabolism in and catecholamine effect on rat liver during hypovolemic shock.
    Okuda M, Muneyuki M, Nakashima K, Sogabe T, Miura I.
    Biochem Int; 1987 Dec 05; 15(6):1089-95. PubMed ID: 3440021
    [Abstract] [Full Text] [Related]

  • 15. [Characterization of the state of cardiac energy metabolism using NMR spectroscopy of 31P: comparison with biochemical data].
    Lavanchy N, Martin J, Rossi A.
    J Physiol (Paris); 1985 Dec 05; 80(3):196-201. PubMed ID: 4087211
    [Abstract] [Full Text] [Related]

  • 16. Relationships between cytosolic [ATP], [ATP]/[ADP] and ionic fluxes in the perfused rat heart: A 31P, 23Na and 87Rb NMR study.
    Stewart LC, Deslauriers R, Kupriyanov VV.
    J Mol Cell Cardiol; 1994 Oct 05; 26(10):1377-92. PubMed ID: 7869398
    [Abstract] [Full Text] [Related]

  • 17. Long-term relationship between acute rhabdomyolysis and abnormal high-energy phosphate metabolism potentiated by ischemic exercise.
    Legros P, Jehenson P, Gascard JP, Kozak-Reiss G.
    Med Sci Sports Exerc; 1992 Mar 05; 24(3):298-302. PubMed ID: 1549023
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Energy metabolism in relation to oxygen supply in contracting rat skeletal muscle.
    Idström JP, Subramanian VH, Chance B, Scherstén T, Bylund-Fellenius AC.
    Fed Proc; 1986 Dec 05; 45(13):2937-41. PubMed ID: 3780997
    [Abstract] [Full Text] [Related]

  • 20. High-energy phosphate metabolism during incremental calf exercise in humans measured by 31 phosphorus magnetic resonance spectroscopy (31P MRS).
    Schocke MF, Esterhammer R, Kammerlander C, Rass A, Kremser C, Fraedrich G, Jaschke WR, Greiner A.
    Magn Reson Imaging; 2004 Jan 05; 22(1):109-15. PubMed ID: 14972400
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.