These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


387 related items for PubMed ID: 34325408

  • 1. A stability perspective of bioinspired unmanned aerial vehicles performing optimal dynamic soaring.
    Mir I, Eisa SA, Taha H, Maqsood A, Akhtar S, Islam TU.
    Bioinspir Biomim; 2021 Oct 19; 16(6):. PubMed ID: 34325408
    [Abstract] [Full Text] [Related]

  • 2. A novel hypothesis for how albatrosses optimize their flight physics in real-time: an extremum seeking model and control for dynamic soaring.
    Pokhrel S, Eisa SA.
    Bioinspir Biomim; 2022 Dec 13; 18(1):. PubMed ID: 36594630
    [Abstract] [Full Text] [Related]

  • 3. Bio-inspired energy-harvesting mechanisms and patterns of dynamic soaring.
    Liu DN, Hou ZX, Guo Z, Yang XX, Gao XZ.
    Bioinspir Biomim; 2017 Jan 30; 12(1):016014. PubMed ID: 27991431
    [Abstract] [Full Text] [Related]

  • 4. Thermal soaring flight of birds and unmanned aerial vehicles.
    Akos Z, Nagy M, Leven S, Vicsek T.
    Bioinspir Biomim; 2010 Dec 30; 5(4):045003. PubMed ID: 21098957
    [Abstract] [Full Text] [Related]

  • 5. On the feasibility of the Rayleigh cycle for dynamic soaring trajectories.
    Alexandre D, Marino L, Marta A, Graziani G, Piva R.
    PLoS One; 2020 Dec 30; 15(3):e0229746. PubMed ID: 32126133
    [Abstract] [Full Text] [Related]

  • 6. Bioinspired dynamic soaring simulation system with distributed pressure sensors.
    Wang D, Xie F, Lu Y, Ji T, Du C, Zheng Y.
    Bioinspir Biomim; 2022 Apr 25; 17(3):. PubMed ID: 35189603
    [Abstract] [Full Text] [Related]

  • 7. Auto-landing of fixed wing unmanned aerial vehicles using the backstepping control.
    Lungu M.
    ISA Trans; 2019 Dec 25; 95():194-210. PubMed ID: 31171303
    [Abstract] [Full Text] [Related]

  • 8. Optimal path planning of Unmanned Aerial Vehicles (UAVs) for targets touring: Geometric and arc parameterization approaches.
    Forkan M, Rizvi MM, Chowdhury MAM.
    PLoS One; 2022 Dec 25; 17(10):e0276105. PubMed ID: 36240139
    [Abstract] [Full Text] [Related]

  • 9. The Control Method of Autonomous Flight Avoidance Barriers of UAVs in Confined Environments.
    Dong T, Zhang Y, Xiao Q, Huang Y.
    Sensors (Basel); 2023 Jun 25; 23(13):. PubMed ID: 37447745
    [Abstract] [Full Text] [Related]

  • 10. A Path Planning Method with Perception Optimization Based on Sky Scanning for UAVs.
    Yuan S, Ota K, Dong M, Zhao J.
    Sensors (Basel); 2022 Jan 24; 22(3):. PubMed ID: 35161639
    [Abstract] [Full Text] [Related]

  • 11. Integrated optimization of unmanned aerial vehicle task allocation and path planning under steady wind.
    Luo H, Liang Z, Zhu M, Hu X, Wang G.
    PLoS One; 2018 Jan 24; 13(3):e0194690. PubMed ID: 29561888
    [Abstract] [Full Text] [Related]

  • 12. Non-Singular Finite Time Tracking Control Approach Based on Disturbance Observers for Perturbed Quadrotor Unmanned Aerial Vehicles.
    El-Sousy FFM, Alattas KA, Mofid O, Mobayen S, Asad JH, Skruch P, Assawinchaichote W.
    Sensors (Basel); 2022 Apr 05; 22(7):. PubMed ID: 35408398
    [Abstract] [Full Text] [Related]

  • 13. Development of Multiple UAV Collaborative Driving Systems for Improving Field Phenotyping.
    Lee HS, Shin BS, Thomasson JA, Wang T, Zhang Z, Han X.
    Sensors (Basel); 2022 Feb 12; 22(4):. PubMed ID: 35214326
    [Abstract] [Full Text] [Related]

  • 14. Optimal dynamic soaring consists of successive shallow arcs.
    Bousquet GD, Triantafyllou MS, Slotine JE.
    J R Soc Interface; 2017 Oct 12; 14(135):. PubMed ID: 28978747
    [Abstract] [Full Text] [Related]

  • 15. Optimal Polygon Decomposition for UAV Survey Coverage Path Planning in Wind.
    Coombes M, Fletcher T, Chen WH, Liu C.
    Sensors (Basel); 2018 Jul 03; 18(7):. PubMed ID: 29970818
    [Abstract] [Full Text] [Related]

  • 16. Autonomous Unmanned Aerial Vehicles in Search and Rescue Missions Using Real-Time Cooperative Model Predictive Control.
    de Alcantara Andrade FA, Reinier Hovenburg A, Netto de Lima L, Dahlin Rodin C, Johansen TA, Storvold R, Moraes Correia CA, Barreto Haddad D.
    Sensors (Basel); 2019 Sep 20; 19(19):. PubMed ID: 31547143
    [Abstract] [Full Text] [Related]

  • 17. A Semi-Physical Platform for Guidance and Formations of Fixed-Wing Unmanned Aerial Vehicles.
    Yang J, Thomas AG, Singh S, Baldi S, Wang X.
    Sensors (Basel); 2020 Feb 19; 20(4):. PubMed ID: 32093021
    [Abstract] [Full Text] [Related]

  • 18. Aerodynamic efficiency of gliding birds vs comparable UAVs: a review.
    Harvey C, Inman DJ.
    Bioinspir Biomim; 2021 Apr 19; 16(3):. PubMed ID: 33157545
    [Abstract] [Full Text] [Related]

  • 19. Neural Control and Online Learning for Speed Adaptation of Unmanned Aerial Vehicles.
    Jaiton V, Rothomphiwat K, Ebeid E, Manoonpong P.
    Front Neural Circuits; 2022 Apr 19; 16():839361. PubMed ID: 35547643
    [Abstract] [Full Text] [Related]

  • 20. Analysis on security-related concerns of unmanned aerial vehicle: attacks, limitations, and recommendations.
    Siddiqi MA, Iwendi C, Jaroslava K, Anumbe N.
    Math Biosci Eng; 2022 Jan 10; 19(3):2641-2670. PubMed ID: 35240800
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 20.