These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
192 related items for PubMed ID: 34328107
1. Staphyloxanthin inhibitory potential of thymol impairs antioxidant fitness, enhances neutrophil mediated killing and alters membrane fluidity of methicillin resistant Staphylococcus aureus. Valliammai A, Selvaraj A, Muthuramalingam P, Priya A, Ramesh M, Pandian SK. Biomed Pharmacother; 2021 Sep; 141():111933. PubMed ID: 34328107 [Abstract] [Full Text] [Related]
2. Hesperidin inhibits biofilm formation, virulence and staphyloxanthin synthesis in methicillin resistant Staphylococcus aureus by targeting SarA and CrtM: an in vitro and in silico approach. Vijayakumar K, Muhilvannan S, Arun Vignesh M. World J Microbiol Biotechnol; 2022 Jan 22; 38(3):44. PubMed ID: 35064842 [Abstract] [Full Text] [Related]
3. Dehydrosqualene Desaturase as a Novel Target for Anti-Virulence Therapy against Staphylococcus aureus. Gao P, Davies J, Kao RYT. mBio; 2017 Sep 05; 8(5):. PubMed ID: 28874472 [Abstract] [Full Text] [Related]
4. Carvacrol Targets SarA and CrtM of Methicillin-Resistant Staphylococcus aureus to Mitigate Biofilm Formation and Staphyloxanthin Synthesis: An In Vitro and In Vivo Approach. Selvaraj A, Valliammai A, Muthuramalingam P, Priya A, Suba M, Ramesh M, Karutha Pandian S. ACS Omega; 2020 Dec 08; 5(48):31100-31114. PubMed ID: 33324819 [Abstract] [Full Text] [Related]
6. Berberine hydrochloride reduces staphyloxanthin synthesis by inhibiting fni genes in methicillin-resistant Staphylococcus aureus. Qiu M, Xu Z. Mol Biol Rep; 2024 Jun 14; 51(1):761. PubMed ID: 38874884 [Abstract] [Full Text] [Related]
7. Search method for inhibitors of Staphyloxanthin production by methicillin-resistant Staphylococcus aureus. Sakai K, Koyama N, Fukuda T, Mori Y, Onaka H, Tomoda H. Biol Pharm Bull; 2012 Jun 14; 35(1):48-53. PubMed ID: 22223336 [Abstract] [Full Text] [Related]
8. Photolysis of Staphyloxanthin in Methicillin-Resistant Staphylococcus aureus Potentiates Killing by Reactive Oxygen Species. Dong PT, Mohammad H, Hui J, Leanse LG, Li J, Liang L, Dai T, Seleem MN, Cheng JX. Adv Sci (Weinh); 2019 Jun 05; 6(11):1900030. PubMed ID: 31179216 [Abstract] [Full Text] [Related]
9. Celastrol mitigates staphyloxanthin biosynthesis and biofilm formation in Staphylococcus aureus via targeting key regulators of virulence; in vitro and in vivo approach. Yehia FAA, Yousef N, Askoura M. BMC Microbiol; 2022 Apr 15; 22(1):106. PubMed ID: 35421933 [Abstract] [Full Text] [Related]
10. Interrelationships between Fatty Acid Composition, Staphyloxanthin Content, Fluidity, and Carbon Flow in the Staphylococcus aureus Membrane. Tiwari KB, Gatto C, Wilkinson BJ. Molecules; 2018 May 17; 23(5):. PubMed ID: 29772798 [Abstract] [Full Text] [Related]
11. Protective Effect of the Golden Staphyloxanthin Biosynthesis Pathway on Staphylococcus aureus under Cold Atmospheric Plasma Treatment. Yang Y, Wang H, Zhou H, Hu Z, Shang W, Rao Y, Peng H, Zheng Y, Hu Q, Zhang R, Luo H, Rao X. Appl Environ Microbiol; 2020 Jan 21; 86(3):. PubMed ID: 31704682 [Abstract] [Full Text] [Related]
12. Interactions of staphyloxanthin and enterobactin with myeloperoxidase and reactive chlorine species. Coker MS, Forbes LV, Plowman-Holmes M, Murdoch DR, Winterbourn CC, Kettle AJ. Arch Biochem Biophys; 2018 May 15; 646():80-89. PubMed ID: 29614256 [Abstract] [Full Text] [Related]
13. Impact of Deficiencies in Branched-Chain Fatty Acids and Staphyloxanthin in Staphylococcus aureus. Braungardt H, Singh VK. Biomed Res Int; 2019 May 15; 2019():2603435. PubMed ID: 30805362 [Abstract] [Full Text] [Related]
14. Antibiofilm and staphyloxanthin inhibitory potential of terbinafine against Staphylococcus aureus: in vitro and in vivo studies. Askoura M, Yousef N, Mansour B, Yehia FAA. Ann Clin Microbiol Antimicrob; 2022 May 30; 21(1):21. PubMed ID: 35637481 [Abstract] [Full Text] [Related]
15. Inhibition of staphyloxanthin biosynthesis in Staphylococcus aureus by rhodomyrtone, a novel antibiotic candidate. Leejae S, Hasap L, Voravuthikunchai SP. J Med Microbiol; 2013 Mar 30; 62(Pt 3):421-428. PubMed ID: 23242641 [Abstract] [Full Text] [Related]
16. 4-Chloro-2-Isopropyl-5-Methylphenol Exhibits Antimicrobial and Adjuvant Activity against Methicillin-Resistant Staphylococcus aureus. Kim BC, Kim H, Lee HS, Kim SH, Cho DH, Jung HJ, Bhatia SK, Yune PS, Joo HS, Kim JS, Kim W, Yang YH. J Microbiol Biotechnol; 2022 Jun 28; 32(6):730-739. PubMed ID: 35586930 [Abstract] [Full Text] [Related]
17. A natural inhibitor of diapophytoene desaturase attenuates methicillin-resistant Staphylococcus aureus (MRSA) pathogenicity and overcomes drug-resistance. Han B, Wang H, Niu X. Br J Pharmacol; 2024 Aug 28; 181(15):2583-2599. PubMed ID: 38604611 [Abstract] [Full Text] [Related]
18. The Staphylococcus aureus AirSR Two-Component System Mediates Reactive Oxygen Species Resistance via Transcriptional Regulation of Staphyloxanthin Production. Hall JW, Yang J, Guo H, Ji Y. Infect Immun; 2017 Feb 28; 85(2):. PubMed ID: 27872240 [Abstract] [Full Text] [Related]
19. Diclofenac and Meloxicam Exhibited Anti-Virulence Activities Targeting Staphyloxanthin Production in Methicillin-Resistant Staphylococcus aureus. Elmesseri RA, Saleh SE, Ghobish SA, Majrashi TA, Elsherif HM, Aboshanab KM. Antibiotics (Basel); 2023 Jan 31; 12(2):. PubMed ID: 36830188 [Abstract] [Full Text] [Related]
20. Sub-inhibitory concentrations of tetrabromobisphenol A induce the biofilm formation of methicillin-resistant Staphylococcus aureus. Yu G, Xi H, Sheng T, Lin J, Luo Z, Xu J. Arch Microbiol; 2024 Jun 14; 206(7):301. PubMed ID: 38874781 [Abstract] [Full Text] [Related] Page: [Next] [New Search]