These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


145 related items for PubMed ID: 34328160

  • 1. Electrochemical reduction of CO2 and N2 to synthesize urea on metal-nitrogen-doped carbon catalysts: a theoretical study.
    Zhang Z, Guo L.
    Dalton Trans; 2021 Aug 28; 50(32):11158-11166. PubMed ID: 34328160
    [Abstract] [Full Text] [Related]

  • 2. A Nitrogen-Doped Carbon Catalyst for Electrochemical CO2 Conversion to CO with High Selectivity and Current Density.
    Jhong HM, Tornow CE, Smid B, Gewirth AA, Lyth SM, Kenis PJ.
    ChemSusChem; 2017 Mar 22; 10(6):1094-1099. PubMed ID: 27791338
    [Abstract] [Full Text] [Related]

  • 3. Carbon-Based Metal-Free Catalysts for Electrocatalytic Reduction of Nitrogen for Synthesis of Ammonia at Ambient Conditions.
    Zhao S, Lu X, Wang L, Gale J, Amal R.
    Adv Mater; 2019 Mar 22; 31(13):e1805367. PubMed ID: 30648293
    [Abstract] [Full Text] [Related]

  • 4. Electrocatalytic Reduction of Nitrogen and Carbon Dioxide to Chemical Fuels: Challenges and Opportunities for a Solar Fuel Device.
    Fenwick AQ, Gregoire JM, Luca OR.
    J Photochem Photobiol B; 2015 Nov 22; 152(Pt A):47-57. PubMed ID: 25596654
    [Abstract] [Full Text] [Related]

  • 5. N-doped Cu2O with the tunable Cu0 and Cu+ sites for selective CO2 electrochemical reduction to ethylene.
    Shen Y, Qian L, Xu Q, Wang S, Chen Y, Lu H, Zhou Y, Ye J, Zhao J, Gao X, Zhang S.
    J Environ Sci (China); 2025 Apr 22; 150():246-253. PubMed ID: 39306399
    [Abstract] [Full Text] [Related]

  • 6. Atomic Pyridinic Nitrogen as Highly Active Metal-Free Coordination Sites at the Biotic-Abiotic Interface for Bio-Electrochemical CO2 Reduction.
    Xia R, Cheng J, Chen Z, Zhang Z, Zhou X, Zhou J, Zhang M.
    Small; 2024 May 22; 20(18):e2306331. PubMed ID: 38054812
    [Abstract] [Full Text] [Related]

  • 7. Synergistic Effect of Active Sites of Double-Atom Catalysts for Nitrogen Reduction Reaction.
    Sun CN, Wang ZL, Lang XY, Wen Z, Jiang Q.
    ChemSusChem; 2021 Oct 20; 14(20):4593-4600. PubMed ID: 34418314
    [Abstract] [Full Text] [Related]

  • 8. Metal-free Nanoporous Carbon as a Catalyst for Electrochemical Reduction of CO2 to CO and CH4.
    Li W, Seredych M, Rodríguez-Castellón E, Bandosz TJ.
    ChemSusChem; 2016 Mar 21; 9(6):606-16. PubMed ID: 26835880
    [Abstract] [Full Text] [Related]

  • 9. Revealing the Origin of Activity in Nitrogen-Doped Nanocarbons towards Electrocatalytic Reduction of Carbon Dioxide.
    Xu J, Kan Y, Huang R, Zhang B, Wang B, Wu KH, Lin Y, Sun X, Li Q, Centi G, Su D.
    ChemSusChem; 2016 May 23; 9(10):1085-9. PubMed ID: 27100272
    [Abstract] [Full Text] [Related]

  • 10. Understanding the Role of Inter- and Intramolecular Promoters in Electro- and Photochemical CO2 Reduction Using Mn, Re, and Ru Catalysts.
    Fujita E, Grills DC, Manbeck GF, Polyansky DE.
    Acc Chem Res; 2022 Mar 01; 55(5):616-628. PubMed ID: 35133133
    [Abstract] [Full Text] [Related]

  • 11. Bimetallic Electrocatalysts for CO2 Reduction.
    Zhu W, Tackett BM, Chen JG, Jiao F.
    Top Curr Chem (Cham); 2018 Oct 26; 376(6):41. PubMed ID: 30361990
    [Abstract] [Full Text] [Related]

  • 12. Origin of the Excellent Performance of Ru on Nitrogen-Doped Carbon Nanofibers for CO2 Hydrogenation to CH4.
    Roldán L, Marco Y, García-Bordejé E.
    ChemSusChem; 2017 Mar 22; 10(6):1139-1144. PubMed ID: 27921378
    [Abstract] [Full Text] [Related]

  • 13. Using Light and Electrons to Bend Carbon Dioxide: Developing and Understanding Catalysts for CO2 Conversion to Fuels and Feedstocks.
    Cohen KY, Evans R, Dulovic S, Bocarsly AB.
    Acc Chem Res; 2022 Apr 05; 55(7):944-954. PubMed ID: 35290017
    [Abstract] [Full Text] [Related]

  • 14. Recent advancements in carbon/metal-based nano-catalysts for the reduction of CO2 to value-added products.
    Senthilkumar AK, Kumar M, Samuel MS, Ethiraj S, Shkir M, Chang JH.
    Chemosphere; 2024 Sep 05; 364():143017. PubMed ID: 39103104
    [Abstract] [Full Text] [Related]

  • 15. Cellulose derived nitrogen and phosphorus co-doped carbon-based catalysts for catalytic reduction of p-nitrophenol.
    Xie X, Shi J, Pu Y, Wang Z, Zhang LL, Wang JX, Wang D.
    J Colloid Interface Sci; 2020 Jul 01; 571():100-108. PubMed ID: 32182495
    [Abstract] [Full Text] [Related]

  • 16. Photo- and Electrochemical Valorization of Carbon Dioxide Using Earth-Abundant Molecular Catalysts.
    Rosas-Hernández A, Steinlechner C, Junge H, Beller M.
    Top Curr Chem (Cham); 2017 Dec 06; 376(1):1. PubMed ID: 29214521
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Revealing electrocatalytic CN coupling for urea synthesis with metal-free electrocatalyst.
    Cao Y, Meng Y, An R, Zou X, Huang H, Zhong W, Shen Z, Xia Q, Li X, Wang Y.
    J Colloid Interface Sci; 2023 Jul 06; 641():990-999. PubMed ID: 36989825
    [Abstract] [Full Text] [Related]

  • 19. Screening of transition metal and boron atoms co-doped graphdiyne catalysts for electrocatalytic urea synthesis.
    Zhong W, Chen D, Wu Y, Yue J, Shen Z, Huang H, Wang Y, Li X, Lang JP, Xia Q, Cao Y.
    J Colloid Interface Sci; 2024 Feb 06; 655():80-89. PubMed ID: 37925971
    [Abstract] [Full Text] [Related]

  • 20. CO2 adsorption at nitrogen-doped carbons prepared by K2CO3 activation of urea-modified coconut shell.
    Yue L, Xia Q, Wang L, Wang L, DaCosta H, Yang J, Hu X.
    J Colloid Interface Sci; 2018 Feb 01; 511():259-267. PubMed ID: 29028577
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.