These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Air Quality Data Approach for Defining Wildfire Influence: Impacts on PM2.5, NO2, CO, and O3 in Western Canadian Cities. Schneider SR, Lee K, Santos G, Abbatt JPD. Environ Sci Technol; 2021 Oct 19; 55(20):13709-13717. PubMed ID: 34609856 [Abstract] [Full Text] [Related]
7. Development and application of an aerosol screening model for size-resolved urban aerosols. Stanier CO, Lee SR, HEI Health Review Committee. Res Rep Health Eff Inst; 2014 Jun 19; (179):3-79. PubMed ID: 25145039 [Abstract] [Full Text] [Related]
8. Health impact analysis of PM2.5 from wildfire smoke in Canada (2013-2015, 2017-2018). Matz CJ, Egyed M, Xi G, Racine J, Pavlovic R, Rittmaster R, Henderson SB, Stieb DM. Sci Total Environ; 2020 Jul 10; 725():138506. PubMed ID: 32302851 [Abstract] [Full Text] [Related]
11. Mortality attributable to PM2.5 from wildland fires in California from 2008 to 2018. Connolly R, Marlier ME, Garcia-Gonzales DA, Wilkins J, Su J, Bekker C, Jung J, Bonilla E, Burnett RT, Zhu Y, Jerrett M. Sci Adv; 2024 Jun 07; 10(23):eadl1252. PubMed ID: 38848356 [Abstract] [Full Text] [Related]
12. Machine Learning-Based Integration of High-Resolution Wildfire Smoke Simulations and Observations for Regional Health Impact Assessment. Zou Y, O'Neill SM, Larkin NK, Alvarado EC, Solomon R, Mass C, Liu Y, Odman MT, Shen H. Int J Environ Res Public Health; 2019 Jun 17; 16(12):. PubMed ID: 31212933 [Abstract] [Full Text] [Related]
13. Observations and impacts of transported Canadian wildfire smoke on ozone and aerosol air quality in the Maryland region on June 9-12, 2015. Dreessen J, Sullivan J, Delgado R. J Air Waste Manag Assoc; 2016 Sep 17; 66(9):842-62. PubMed ID: 26963934 [Abstract] [Full Text] [Related]
14. A novel ensemble-based statistical approach to estimate daily wildfire-specific PM2.5 in California (2006-2020). Aguilera R, Luo N, Basu R, Wu J, Clemesha R, Gershunov A, Benmarhnia T. Environ Int; 2023 Jan 17; 171():107719. PubMed ID: 36592523 [Abstract] [Full Text] [Related]
16. Quantifying the premature mortality and economic loss from wildfire-induced PM2.5 in the contiguous U.S. Pan S, Gan L, Jung J, Yu W, Roy A, Diao L, Jeon W, Souri AH, Gao HO, Choi Y. Sci Total Environ; 2023 Jun 01; 875():162614. PubMed ID: 36871727 [Abstract] [Full Text] [Related]
17. Potential air toxics hot spots in truck terminals and cabs. Smith TJ, Davis ME, Hart JE, Blicharz A, Laden F, Garshick E, HEI Health Review Committee. Res Rep Health Eff Inst; 2012 Dec 01; (172):5-82. PubMed ID: 23409510 [Abstract] [Full Text] [Related]
18. The Canadian Optimized Statistical Smoke Exposure Model (CanOSSEM): A machine learning approach to estimate national daily fine particulate matter (PM2.5) exposure. Paul N, Yao J, McLean KE, Stieb DM, Henderson SB. Sci Total Environ; 2022 Dec 01; 850():157956. PubMed ID: 35981575 [Abstract] [Full Text] [Related]
19. Wildfires in the western United States are mobilizing PM2.5-associated nutrients and may be contributing to downwind cyanobacteria blooms. Olson NE, Boaggio KL, Rice RB, Foley KM, LeDuc SD. Environ Sci Process Impacts; 2023 Jun 21; 25(6):1049-1066. PubMed ID: 37232758 [Abstract] [Full Text] [Related]
20. Wildland Fires Worsened Population Exposure to PM2.5 Pollution in the Contiguous United States. Zhang D, Wang W, Xi Y, Bi J, Hang Y, Zhu Q, Pu Q, Chang H, Liu Y. Environ Sci Technol; 2023 Dec 05; 57(48):19990-19998. PubMed ID: 37943716 [Abstract] [Full Text] [Related] Page: [Next] [New Search]