These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
372 related items for PubMed ID: 34333011
1. Solar-driven conversion of carbon dioxide over nanostructured metal-based catalysts in alternative approaches: Fundamental mechanisms and recent progress. Hoang VC, Bui TS, Nguyen HTD, Hoang TT, Rahman G, Le QV, Nguyen DLT. Environ Res; 2021 Nov; 202():111781. PubMed ID: 34333011 [Abstract] [Full Text] [Related]
2. Electrocatalytic Reduction of Nitrogen and Carbon Dioxide to Chemical Fuels: Challenges and Opportunities for a Solar Fuel Device. Fenwick AQ, Gregoire JM, Luca OR. J Photochem Photobiol B; 2015 Nov; 152(Pt A):47-57. PubMed ID: 25596654 [Abstract] [Full Text] [Related]
3. Recent advances in heterogeneous catalysis of solar-driven carbon dioxide conversion. Xu J, Roghabadi FA, Luo Y, Ahmadi V, Wang Q, Wang Z, He H. J Environ Sci (China); 2024 Jun; 140():165-182. PubMed ID: 38331498 [Abstract] [Full Text] [Related]
4. Advances and recent trends in heterogeneous photo(electro)-catalysis for solar fuels and chemicals. Highfield J. Molecules; 2015 Apr 15; 20(4):6739-93. PubMed ID: 25884553 [Abstract] [Full Text] [Related]
5. Current Issues in Molecular Catalysis Illustrated by Iron Porphyrins as Catalysts of the CO2-to-CO Electrochemical Conversion. Costentin C, Robert M, Savéant JM. Acc Chem Res; 2015 Dec 15; 48(12):2996-3006. PubMed ID: 26559053 [Abstract] [Full Text] [Related]
6. Solar fuels via artificial photosynthesis. Gust D, Moore TA, Moore AL. Acc Chem Res; 2009 Dec 21; 42(12):1890-8. PubMed ID: 19902921 [Abstract] [Full Text] [Related]
7. Solar Panel Technologies for Light-to-Chemical Conversion. Andrei V, Wang Q, Uekert T, Bhattacharjee S, Reisner E. Acc Chem Res; 2022 Dec 06; 55(23):3376-3386. PubMed ID: 36395337 [Abstract] [Full Text] [Related]
8. Hybrid bioinorganic approach to solar-to-chemical conversion. Nichols EM, Gallagher JJ, Liu C, Su Y, Resasco J, Yu Y, Sun Y, Yang P, Chang MC, Chang CJ. Proc Natl Acad Sci U S A; 2015 Sep 15; 112(37):11461-6. PubMed ID: 26305947 [Abstract] [Full Text] [Related]
9. Photothermal conversion of CO₂ into CH₄ with H₂ over Group VIII nanocatalysts: an alternative approach for solar fuel production. Meng X, Wang T, Liu L, Ouyang S, Li P, Hu H, Kako T, Iwai H, Tanaka A, Ye J. Angew Chem Int Ed Engl; 2014 Oct 20; 53(43):11478-82. PubMed ID: 25044684 [Abstract] [Full Text] [Related]
10. Solar-Driven Continuous CO2 Reduction to CO and CH4 using Heterogeneous Photothermal Catalysts: Recent Progress and Remaining Challenges. Schuurmans JHA, Masson TM, Zondag SDA, Buskens P, Noël T. ChemSusChem; 2024 Feb 22; 17(4):e202301405. PubMed ID: 38033222 [Abstract] [Full Text] [Related]
11. CO2 Reduction: From Homogeneous to Heterogeneous Electrocatalysis. Zhang S, Fan Q, Xia R, Meyer TJ. Acc Chem Res; 2020 Jan 21; 53(1):255-264. PubMed ID: 31913013 [Abstract] [Full Text] [Related]
12. Photothermal Catalytic CO2 Conversion: Beyond Catalysis and Photocatalysis. Fresno F, Iglesias-Juez A, Coronado JM. Top Curr Chem (Cham); 2023 May 30; 381(4):21. PubMed ID: 37253819 [Abstract] [Full Text] [Related]
13. Nanostructured Materials for Photothermal Carbon Dioxide Hydrogenation: Regulating Solar Utilization and Catalytic Performance. Lv C, Bai X, Ning S, Song C, Guan Q, Liu B, Li Y, Ye J. ACS Nano; 2023 Feb 14; 17(3):1725-1738. PubMed ID: 36734978 [Abstract] [Full Text] [Related]
14. Understanding the Role of Inter- and Intramolecular Promoters in Electro- and Photochemical CO2 Reduction Using Mn, Re, and Ru Catalysts. Fujita E, Grills DC, Manbeck GF, Polyansky DE. Acc Chem Res; 2022 Mar 01; 55(5):616-628. PubMed ID: 35133133 [Abstract] [Full Text] [Related]
15. Solar light photocatalytic CO2 reduction: general considerations and selected bench-mark photocatalysts. Neațu S, Maciá-Agulló JA, Garcia H. Int J Mol Sci; 2014 Mar 25; 15(4):5246-62. PubMed ID: 24670477 [Abstract] [Full Text] [Related]
16. Powering the next industrial revolution: transitioning from nonrenewable energy to solar fuels via CO2 reduction. Batrice RJ, Gordon JC. RSC Adv; 2020 Dec 21; 11(1):87-113. PubMed ID: 35423038 [Abstract] [Full Text] [Related]
17. Photo- and Electrochemical Valorization of Carbon Dioxide Using Earth-Abundant Molecular Catalysts. Rosas-Hernández A, Steinlechner C, Junge H, Beller M. Top Curr Chem (Cham); 2017 Dec 06; 376(1):1. PubMed ID: 29214521 [Abstract] [Full Text] [Related]
18. Nanostructured Indium Oxide Coated Silicon Nanowire Arrays: A Hybrid Photothermal/Photochemical Approach to Solar Fuels. Hoch LB, O'Brien PG, Jelle A, Sandhel A, Perovic DD, Mims CA, Ozin GA. ACS Nano; 2016 Sep 27; 10(9):9017-25. PubMed ID: 27598429 [Abstract] [Full Text] [Related]
19. Hydride Transfer-Based CO2 Reduction Catalysis: Navigating Metal Hydride to Organic Hydride in the Catalytic Loop. Choudhury J, Bhardwaj R, Mandal SK. Acc Chem Res; 2024 Oct 01; 57(19):2859-2871. PubMed ID: 39292623 [Abstract] [Full Text] [Related]
20. Using Light and Electrons to Bend Carbon Dioxide: Developing and Understanding Catalysts for CO2 Conversion to Fuels and Feedstocks. Cohen KY, Evans R, Dulovic S, Bocarsly AB. Acc Chem Res; 2022 Apr 05; 55(7):944-954. PubMed ID: 35290017 [Abstract] [Full Text] [Related] Page: [Next] [New Search]