These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


109 related items for PubMed ID: 34342880

  • 1. Two polyurethanases PueA and PueB are major extracellular lipases partly secreted by the mediation of their cognate ABC exporter AprDEF in Pseudomonas protegens Pf-5.
    Zha DM, Wang XL, Xiao XH, Shi HQ, Yang YW, Shi X, Kang YB.
    Lett Appl Microbiol; 2021 Nov; 73(5):652-657. PubMed ID: 34342880
    [Abstract] [Full Text] [Related]

  • 2. Carbon Catabolite Repression and Impranil Polyurethane Degradation in Pseudomonas protegens Strain Pf-5.
    Hung CS, Zingarelli S, Nadeau LJ, Biffinger JC, Drake CA, Crouch AL, Barlow DE, Russell JN, Crookes-Goodson WJ.
    Appl Environ Microbiol; 2016 Oct 15; 82(20):6080-6090. PubMed ID: 27496773
    [Abstract] [Full Text] [Related]

  • 3. Effect of insertional mutations in the pueA and pueB genes encoding two polyurethanases in Pseudomonas chlororaphis contained within a gene cluster.
    Howard GT, Mackie RI, Cann IK, Ohene-Adjei S, Aboudehen KS, Duos BG, Childers GW.
    J Appl Microbiol; 2007 Dec 15; 103(6):2074-83. PubMed ID: 18045391
    [Abstract] [Full Text] [Related]

  • 4. The polyester polyurethanase gene (pueA) from Pseudomonas chlororaphis encodes a lipase.
    Stern RV, Howard GT.
    FEMS Microbiol Lett; 2000 Apr 15; 185(2):163-8. PubMed ID: 10754242
    [Abstract] [Full Text] [Related]

  • 5. Molecular identification of lipase LipA from Pseudomonas protegens Pf-5 and characterization of two whole-cell biocatalysts Pf-5 and Top10lipA.
    Zha D, Xu L, Zhang H, Yan Y.
    J Microbiol Biotechnol; 2014 May 15; 24(5):619-28. PubMed ID: 24548931
    [Abstract] [Full Text] [Related]

  • 6. The ABC-exporter genes involved in the lipase secretion are clustered with the genes for lipase, alkaline protease, and serine protease homologues in Pseudomonas fluorescens no. 33.
    Kawai E, Idei A, Kumura H, Shimazaki K, Akatsuka H, Omori K.
    Biochim Biophys Acta; 1999 Sep 03; 1446(3):377-82. PubMed ID: 10524213
    [Abstract] [Full Text] [Related]

  • 7. Efficient extracellular production of type I secretion pathway-dependent Pseudomonas fluorescens lipase in recombinant Escherichia coli by heterologous ABC protein exporters.
    Eom GT, Lee SH, Oh YH, Choi JE, Park SJ, Song JK.
    Biotechnol Lett; 2014 Oct 03; 36(10):2037-42. PubMed ID: 24930103
    [Abstract] [Full Text] [Related]

  • 8. N-terminal transmembrane domain of lipase LipA from Pseudomonas protegens Pf-5: A must for its efficient folding into an active conformation.
    Zha D, Zhang H, Zhang H, Xu L, Yan Y.
    Biochimie; 2014 Oct 03; 105():165-71. PubMed ID: 25038570
    [Abstract] [Full Text] [Related]

  • 9. The two-component GacS-GacA system activates lipA translation by RsmE but not RsmA in Pseudomonas protegens Pf-5.
    Zha D, Xu L, Zhang H, Yan Y.
    Appl Environ Microbiol; 2014 Nov 03; 80(21):6627-37. PubMed ID: 25128345
    [Abstract] [Full Text] [Related]

  • 10. Enhancing functional production of a chaperone-dependent lipase in Escherichia coli using the dual expression cassette plasmid.
    Quyen TD, Vu CH, Le GT.
    Microb Cell Fact; 2012 Mar 01; 11():29. PubMed ID: 22380513
    [Abstract] [Full Text] [Related]

  • 11. Efficient markerless gene deletions in Pseudomonas protegens Pf-5 using a upp-based counterselective system.
    Wang XL, Dai SY, Wang QJ, Xu HN, Shi HQ, Kang YB, Zha DM.
    Biotechnol Lett; 2020 Feb 01; 42(2):277-285. PubMed ID: 31781926
    [Abstract] [Full Text] [Related]

  • 12. Enhancement of the efficiency of secretion of heterologous lipase in Escherichia coli by directed evolution of the ABC transporter system.
    Eom GT, Song JK, Ahn JH, Seo YS, Rhee JS.
    Appl Environ Microbiol; 2005 Jul 01; 71(7):3468-74. PubMed ID: 16000750
    [Abstract] [Full Text] [Related]

  • 13. A novel eurythermic and thermostale lipase LipM from Pseudomonas moraviensis M9 and its application in the partial hydrolysis of algal oil.
    Yang W, Cao H, Xu L, Zhang H, Yan Y.
    BMC Biotechnol; 2015 Oct 14; 15():94. PubMed ID: 26463643
    [Abstract] [Full Text] [Related]

  • 14. Bacterial lipases from Pseudomonas: regulation of gene expression and mechanisms of secretion.
    Rosenau F, Jaeger K.
    Biochimie; 2000 Nov 14; 82(11):1023-32. PubMed ID: 11099799
    [Abstract] [Full Text] [Related]

  • 15. ArgR directly inhibits lipA transcription in Pseudomonas protegens Pf-5.
    Ying W, Wang XL, Shi HQ, Yan LW, Zhang BH, Li HQ, Yang JY, Zha DM.
    Biochimie; 2019 Dec 14; 167():34-41. PubMed ID: 31491441
    [Abstract] [Full Text] [Related]

  • 16. The Pseudomonas fluorescens lipase has a C-terminal secretion signal and is secreted by a three-component bacterial ABC-exporter system.
    Duong F, Soscia C, Lazdunski A, Murgier M.
    Mol Microbiol; 1994 Mar 14; 11(6):1117-26. PubMed ID: 8022281
    [Abstract] [Full Text] [Related]

  • 17. Gene cloning, sequence analysis and heterologous expression of a novel cold-active lipase from Pseudomonas sp. PF16.
    Ji X, Li S, Lin L, Zhang Q, Wei Y.
    Technol Health Care; 2015 Mar 14; 23 Suppl 1():S109-17. PubMed ID: 26410312
    [Abstract] [Full Text] [Related]

  • 18. Overexpression, immobilization and biotechnological application of Pseudomonas lipases.
    Reetz MT, Jaeger KE.
    Chem Phys Lipids; 1998 Jun 14; 93(1-2):3-14. PubMed ID: 9720245
    [Abstract] [Full Text] [Related]

  • 19. Cold-adapted RTX lipase from antarctic Pseudomonas sp. strain AMS8: isolation, molecular modeling and heterologous expression.
    Ali MS, Ganasen M, Rahman RN, Chor AL, Salleh AB, Basri M.
    Protein J; 2013 Apr 14; 32(4):317-25. PubMed ID: 23645400
    [Abstract] [Full Text] [Related]

  • 20. In vivo functional expression of a screened P. aeruginosa chaperone-dependent lipase in E. coli.
    Wu X, You P, Su E, Xu J, Gao B, Wei D.
    BMC Biotechnol; 2012 Sep 06; 12():58. PubMed ID: 22950599
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.