These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


153 related items for PubMed ID: 34366592

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23. Transcriptome analysis of genes involved in secondary cell wall biosynthesis in developing internodes of Miscanthus lutarioriparius.
    Hu R, Xu Y, Yu C, He K, Tang Q, Jia C, He G, Wang X, Kong Y, Zhou G.
    Sci Rep; 2017 Aug 22; 7(1):9034. PubMed ID: 28831170
    [Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25. Flowering induction in the bioenergy grass Miscanthus sacchariflorus is a quantitative short-day response, whilst delayed flowering under long days increases biomass accumulation.
    Jensen E, Robson P, Norris J, Cookson A, Farrar K, Donnison I, Clifton-Brown J.
    J Exp Bot; 2013 Jan 22; 64(2):541-52. PubMed ID: 23183254
    [Abstract] [Full Text] [Related]

  • 26. Nutrient and drought stress: implications for phenology and biomass quality in miscanthus.
    da Costa RMF, Simister R, Roberts LA, Timms-Taravella E, Cambler AB, Corke FMK, Han J, Ward RJ, Buckeridge MS, Gomez LD, Bosch M.
    Ann Bot; 2019 Oct 29; 124(4):553-566. PubMed ID: 30137291
    [Abstract] [Full Text] [Related]

  • 27. Lack of Impacts during Early Establishment Highlights a Short-Term Management Window for Minimizing Invasions from Perennial Biomass Crops.
    West NM, Matlaga DP, Muthukrishnan R, Spyreas G, Jordan NR, Forester JD, Davis AS.
    Front Plant Sci; 2017 Oct 29; 8():767. PubMed ID: 28555146
    [Abstract] [Full Text] [Related]

  • 28. Miscanthus as cellulosic biomass for bioethanol production.
    Lee WC, Kuan WC.
    Biotechnol J; 2015 Jun 29; 10(6):840-54. PubMed ID: 26013948
    [Abstract] [Full Text] [Related]

  • 29. Transcriptome-wide characterization of candidate genes for improving the water use efficiency of energy crops grown on semiarid land.
    Fan Y, Wang Q, Kang L, Liu W, Xu Q, Xing S, Tao C, Song Z, Zhu C, Lin C, Yan J, Li J, Sang T.
    J Exp Bot; 2015 Oct 29; 66(20):6415-29. PubMed ID: 26175351
    [Abstract] [Full Text] [Related]

  • 30. Water Use Efficiency and Stress Tolerance of the Potential Energy Crop Miscanthus lutarioriparius Grown on the Loess Plateau of China.
    Zhao X, Kang L, Wang Q, Lin C, Liu W, Chen W, Sang T, Yan J.
    Plants (Basel); 2021 Mar 13; 10(3):. PubMed ID: 33805780
    [Abstract] [Full Text] [Related]

  • 31. Development of microsatellite markers for Miscanthus sinensis (Poaceae) and cross-amplification in other related species.
    Zhou HF, Li SS, Ge S.
    Am J Bot; 2011 Jul 13; 98(7):e195-7. PubMed ID: 21700800
    [Abstract] [Full Text] [Related]

  • 32. Discovery of natural Miscanthus (Poaceae) triploid plants in sympatric populations of Miscanthus sacchariflorus and Miscanthus sinensis in southern Japan.
    Nishiwaki A, Mizuguti A, Kuwabara S, Toma Y, Ishigaki G, Miyashita T, Yamada T, Matuura H, Yamaguchi S, Rayburn AL, Akashi R, Stewart JR.
    Am J Bot; 2011 Jan 13; 98(1):154-9. PubMed ID: 21613094
    [Abstract] [Full Text] [Related]

  • 33. Draft genome assembly of the biofuel grass crop Miscanthus sacchariflorus.
    De Vega J, Donnison I, Dyer S, Farrar K.
    F1000Res; 2021 Jan 13; 10():29. PubMed ID: 33732433
    [Abstract] [Full Text] [Related]

  • 34. Heterogeneity and glycan masking of cell wall microstructures in the stems of Miscanthus x giganteus, and its parents M. sinensis and M. sacchariflorus.
    Xue J, Bosch M, Knox JP.
    PLoS One; 2013 Jan 13; 8(11):e82114. PubMed ID: 24312403
    [Abstract] [Full Text] [Related]

  • 35. Potential sources of high value chemicals from leaves, stems and flowers of Miscanthus sinensis 'Goliath' and Miscanthus sacchariflorus.
    Parveen I, Wilson T, Donnison IS, Cookson AR, Hauck B, Threadgill MD.
    Phytochemistry; 2013 Aug 13; 92():160-7. PubMed ID: 23663930
    [Abstract] [Full Text] [Related]

  • 36. Population transcriptomic characterization of the genetic and expression variation of a candidate progenitor of Miscanthus energy crops.
    Yan J, Song Z, Xu Q, Kang L, Zhu C, Xing S, Liu W, Greimler J, Züst T, Li J, Sang T.
    Mol Ecol; 2017 Nov 13; 26(21):5911-5922. PubMed ID: 28833782
    [Abstract] [Full Text] [Related]

  • 37. Functional conservation and divergence of Miscanthus lutarioriparius GT43 gene family in xylan biosynthesis.
    Wang X, Tang Q, Zhao X, Jia C, Yang X, He G, Wu A, Kong Y, Hu R, Zhou G.
    BMC Plant Biol; 2016 Apr 26; 16():102. PubMed ID: 27114083
    [Abstract] [Full Text] [Related]

  • 38. Population transcriptomics reveals a potentially positive role of expression diversity in adaptation.
    Xu Q, Xing S, Zhu C, Liu W, Fan Y, Wang Q, Song Z, Yang W, Luo F, Shang F, Kang L, Chen W, Yan J, Li J, Sang T.
    J Integr Plant Biol; 2015 Mar 26; 57(3):284-99. PubMed ID: 25251542
    [Abstract] [Full Text] [Related]

  • 39. Development of SCAR marker for simultaneous identification of Miscanthus sacchariflorus, M. sinensis and M. x giganteus.
    Kim JK, An GH, Ahn SH, Moon YH, Cha YL, Bark ST, Choi YH, Suh SJ, Seo SG, Kim SH, Koo BC.
    Bioprocess Biosyst Eng; 2012 Jan 26; 35(1-2):55-9. PubMed ID: 22124780
    [Abstract] [Full Text] [Related]

  • 40. A new genotype of Miscanthus sacchariflorus Geodae-Uksae 1, identified by growth characteristics and a specific SCAR marker.
    An GH, Kim JK, Moon YH, Cha YL, Yoon YM, Koo BC, Park KG.
    Bioprocess Biosyst Eng; 2013 Jun 26; 36(6):695-703. PubMed ID: 23546735
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 8.