These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
276 related items for PubMed ID: 34383608
21. Subcritical Water Extraction of Valuable Metals from Spent Lithium-Ion Batteries. Lie J, Tanda S, Liu JC. Molecules; 2020 May 06; 25(9):. PubMed ID: 32384592 [Abstract] [Full Text] [Related]
22. Recovery of valuable metals from mixed types of spent lithium ion batteries. Part II: Selective extraction of lithium. Chen X, Cao L, Kang D, Li J, Zhou T, Ma H. Waste Manag; 2018 Oct 06; 80():198-210. PubMed ID: 30455000 [Abstract] [Full Text] [Related]
23. A feasible process for recycling valuable metals from LiNi0.5Co0.2Mn0.3O2 cathode materials of spent Li-ion batteries. Liu DY, Sun SN, Li DY. Environ Technol; 2024 Jun 06; 45(16):3189-3201. PubMed ID: 37158845 [Abstract] [Full Text] [Related]
24. Recycling of valuable metals from spent lithium-ion batteries by self-supplied reductant roasting. Wei N, He Y, Zhang G, Feng Y, Li J, Lu Q, Fu Y. J Environ Manage; 2023 Mar 01; 329():117107. PubMed ID: 36566732 [Abstract] [Full Text] [Related]
25. Novel electrochemically driven and internal circulation process for valuable metals recycling from spent lithium-ion batteries. Li S, Wu X, Jiang Y, Zhou T, Zhao Y, Chen X. Waste Manag; 2021 Dec 01; 136():18-27. PubMed ID: 34634567 [Abstract] [Full Text] [Related]
26. Acid-free extraction of valuable metal elements from spent lithium-ion batteries using waste copperas. Jin X, Zhang P, Teng L, Rohani S, He M, Meng F, Liu Q, Liu W. Waste Manag; 2023 Jun 15; 165():189-198. PubMed ID: 37149393 [Abstract] [Full Text] [Related]
27. A sustainable process for the recovery of valuable metals from spent lithium-ion batteries. Fan B, Chen X, Zhou T, Zhang J, Xu B. Waste Manag Res; 2016 May 15; 34(5):474-81. PubMed ID: 26951340 [Abstract] [Full Text] [Related]
28. A greener method to recover critical metals from spent lithium-ion batteries (LIBs): Synergistic leaching without reducing agents. Roshanfar M, Sartaj M, Kazemeini S. J Environ Manage; 2024 Aug 15; 366():121862. PubMed ID: 39018847 [Abstract] [Full Text] [Related]
29. Improved recovery of valuable metals from spent lithium-ion batteries by efficient reduction roasting and facile acid leaching. Zhang Y, Wang W, Fang Q, Xu S. Waste Manag; 2020 Feb 01; 102():847-855. PubMed ID: 31835062 [Abstract] [Full Text] [Related]
30. Study of the factors influencing the metals solubilisation from a mixture of waste batteries by response surface methodology. Tanong K, Coudert L, Chartier M, Mercier G, Blais JF. Environ Technol; 2017 Dec 01; 38(24):3167-3179. PubMed ID: 28162038 [Abstract] [Full Text] [Related]
31. Comprehensive evaluation on effective leaching of critical metals from spent lithium-ion batteries. Gao W, Liu C, Cao H, Zheng X, Lin X, Wang H, Zhang Y, Sun Z. Waste Manag; 2018 May 01; 75():477-485. PubMed ID: 29459203 [Abstract] [Full Text] [Related]
32. Enhanced reducing capacity of citric acid for lithium-ion battery recycling under microwave-assisted leaching. Li S, Zhang W, Xia Y, Li Q. Waste Manag; 2024 Dec 01; 189():23-33. PubMed ID: 39146601 [Abstract] [Full Text] [Related]
33. Mechanochemically assisted persulfate activation for the facile recovery of metals from spent lithium ion batteries. Liang Z, Peng G, Hu J, Hou H, Cai C, Yang X, Chen S, Liu L, Liang S, Xiao K, Yuan S, Zhou S, Yang J. Waste Manag; 2022 Aug 01; 150():290-300. PubMed ID: 35872333 [Abstract] [Full Text] [Related]
34. Organic reductants based leaching: A sustainable process for the recovery of valuable metals from spent lithium ion batteries. Chen X, Guo C, Ma H, Li J, Zhou T, Cao L, Kang D. Waste Manag; 2018 May 01; 75():459-468. PubMed ID: 29366798 [Abstract] [Full Text] [Related]
35. Direct Electrochemical Leaching Method for High-Purity Lithium Recovery from Spent Lithium Batteries. Yang L, Gao Z, Liu T, Huang M, Liu G, Feng Y, Shao P, Luo X. Environ Sci Technol; 2023 Mar 21; 57(11):4591-4597. PubMed ID: 36881640 [Abstract] [Full Text] [Related]
36. One-step selective separation and efficient recovery of valuable metals from mixed spent lithium batteries in the phosphoric acid system. Zhou X, Yang W, Liu X, Tang J, Su F, Li Z, Yang J, Ma Y. Waste Manag; 2023 Jan 01; 155():53-64. PubMed ID: 36343600 [Abstract] [Full Text] [Related]
37. Effective leaching of spent lithium-ion batteries using DL-lactic acid as lixiviant and selective separation of metals through precipitation and solvent extraction. Sahu S, Devi N. Environ Sci Pollut Res Int; 2023 Aug 01; 30(39):90152-90167. PubMed ID: 36520282 [Abstract] [Full Text] [Related]
38. Stepwise recycling of valuable metals from Ni-rich cathode material of spent lithium-ion batteries. Yang Y, Lei S, Song S, Sun W, Wang L. Waste Manag; 2020 Feb 01; 102():131-138. PubMed ID: 31677520 [Abstract] [Full Text] [Related]
39. Recovery of valuable metals from LiNi0.5Co0.2Mn0.3O2 cathode materials of spent Li-ion batteries using mild mixed acid as leachant. Zhuang L, Sun C, Zhou T, Li H, Dai A. Waste Manag; 2019 Feb 15; 85():175-185. PubMed ID: 30803570 [Abstract] [Full Text] [Related]
40. Recover value metals from spent lithium-ion batteries via a combination of in-situ reduction pretreatment and facile acid leaching. Zhang Y, Yu M, Guo J, Liu S, Song H, Wu W, Zheng C, Gao X. Waste Manag; 2023 Apr 15; 161():193-202. PubMed ID: 36893713 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]