These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


169 related items for PubMed ID: 34383628

  • 21. Impact of elevated phosphogypsum on soil fertility and its aerobic biotransformation through indigenous microorganisms (IMO's) based technology.
    Sengupta I, Dhal PK.
    J Environ Manage; 2021 Nov 01; 297():113195. PubMed ID: 34280855
    [Abstract] [Full Text] [Related]

  • 22. Complete genome sequence of Lysinibacillus sphaericus LMG 22257, a strain with ureolytic activity inducing calcium carbonate precipitation.
    Yan W, Xiao X, Zhang Y.
    J Biotechnol; 2017 Mar 20; 246():33-35. PubMed ID: 28216100
    [Abstract] [Full Text] [Related]

  • 23. Leachable 226Ra in Philippine phosphogypsum and its implication in groundwater contamination in Isabel, Leyte, Philippines.
    Cañete SJ, Palad LJ, Enriquez EB, Garcia TY, Yulo-Nazarea T.
    Environ Monit Assess; 2008 Jul 20; 142(1-3):337-44. PubMed ID: 17874311
    [Abstract] [Full Text] [Related]

  • 24. Phosphogypsum stabilization of bauxite residue: Conversion of its alkaline characteristics.
    Xue S, Li M, Jiang J, Millar GJ, Li C, Kong X.
    J Environ Sci (China); 2019 Mar 20; 77():1-10. PubMed ID: 30573073
    [Abstract] [Full Text] [Related]

  • 25. Stabilized phosphogypsum: class C fly ash: Portland type II cement composites for potential marine application.
    Guo T, Malone RF, Rusch KA.
    Environ Sci Technol; 2001 Oct 01; 35(19):3967-73. PubMed ID: 11642462
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29. The potential radiological impact from a Brazilian phosphate facility.
    Glória dos Reis R, da Costa Lauria D.
    J Environ Radioact; 2014 Oct 01; 136():188-94. PubMed ID: 24971522
    [Abstract] [Full Text] [Related]

  • 30. Phosphogypsum and its potential use in Croatia: challenges and opportunities.
    Bituh T, Petrinec B, Skoko B, Babić D, Rašeta D.
    Arh Hig Rada Toksikol; 2021 Jun 28; 72(3):93-100. PubMed ID: 34187110
    [Abstract] [Full Text] [Related]

  • 31. Radiological, chemical and morphological characterizations of phosphate rock and phosphogypsum from phosphoric acid factories in SW Spain.
    Rentería-Villalobos M, Vioque I, Mantero J, Manjón G.
    J Hazard Mater; 2010 Sep 15; 181(1-3):193-203. PubMed ID: 20537794
    [Abstract] [Full Text] [Related]

  • 32. Industrial wastes: Fly ash, steel slag and phosphogypsum- potential candidates to mitigate greenhouse gas emissions from paddy fields.
    Kumar SS, Kumar A, Singh S, Malyan SK, Baram S, Sharma J, Singh R, Pugazhendhi A.
    Chemosphere; 2020 Feb 15; 241():124824. PubMed ID: 31590026
    [Abstract] [Full Text] [Related]

  • 33. Overcoming the inhibitory effects of urea to improve the kinetics of microbial-induced calcium carbonate precipitation (MICCP) by Lysinibacillus sphaericus strain MB284.
    Rahmaninezhad SA, Houshmand M, Sadighi A, Ahmari K, Kamireddi D, Street RM, Farnam YA, Schauer CL, Najafi AR, Sales CM.
    J Biosci Bioeng; 2024 Jul 15; 138(1):63-72. PubMed ID: 38614831
    [Abstract] [Full Text] [Related]

  • 34. Valorization of phosphogypsum as hydraulic binder.
    Kuryatnyk T, Angulski da Luz C, Ambroise J, Pera J.
    J Hazard Mater; 2008 Dec 30; 160(2-3):681-7. PubMed ID: 18433998
    [Abstract] [Full Text] [Related]

  • 35. Biotransformation of phosphogypsum by bacteria isolated from petroleum-refining wastewaters.
    Wolicka D, Kowalski W, Boszczyk-Maleszak H.
    Pol J Microbiol; 2005 Dec 30; 54(2):169-73. PubMed ID: 16209111
    [Abstract] [Full Text] [Related]

  • 36. Effect of simulated acid rain on fluorine mobility and the bacterial community of phosphogypsum.
    Wang M, Tang Y, Anderson CWN, Jeyakumar P, Yang J.
    Environ Sci Pollut Res Int; 2018 Jun 30; 25(16):15336-15348. PubMed ID: 29564699
    [Abstract] [Full Text] [Related]

  • 37. Synergistic removal of phosphorus and fluorine impurities in phosphogypsum by enzyme-induced modified microbially induced carbonate precipitation method.
    Xiang J, Qiu J, Song Y, Miao Y, Gu X.
    J Environ Manage; 2022 Dec 15; 324():116300. PubMed ID: 36174467
    [Abstract] [Full Text] [Related]

  • 38. Phosphogypsum biotransformation by aerobic bacterial flora and isolated Trichoderma asperellum from Tunisian storage piles.
    Jalali J, Magdich S, Jarboui R, Loungou M, Ammar E.
    J Hazard Mater; 2016 May 05; 308():362-73. PubMed ID: 26855183
    [Abstract] [Full Text] [Related]

  • 39. Rational Control of Calcium Carbonate Precipitation by Engineered Escherichia coli.
    Liang L, Heveran C, Liu R, Gill RT, Nagarajan A, Cameron J, Hubler M, Srubar WV, Cook SM.
    ACS Synth Biol; 2018 Nov 16; 7(11):2497-2506. PubMed ID: 30384588
    [Abstract] [Full Text] [Related]

  • 40. Case study: heavy metals and fluoride contents in the materials of Syrian phosphate industry and in the vicinity of phosphogypsum piles.
    Al Attar L, Al-Oudat M, Shamali K, Abdul Ghany B, Kanakri S.
    Environ Technol; 2012 Nov 16; 33(1-3):143-52. PubMed ID: 22519097
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.