These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
9. Identification of New Antifungal Agents Targeting Chitin Synthesis by a Chemical-Genetic Method. Li Y, Sun H, Zhu X, Bian C, Wang Y, Si S. Molecules; 2019 Aug 29; 24(17):. PubMed ID: 31470665 [Abstract] [Full Text] [Related]
10. The Paradoxical Effect of Echinocandins in Aspergillus fumigatus Relies on Recovery of the β-1,3-Glucan Synthase Fks1. Loiko V, Wagener J. Antimicrob Agents Chemother; 2017 Feb 29; 61(2):. PubMed ID: 27872079 [Abstract] [Full Text] [Related]
11. Analysis of beta-1,3-glucan assembly in Saccharomyces cerevisiae using a synthetic interaction network and altered sensitivity to caspofungin. Lesage G, Sdicu AM, Ménard P, Shapiro J, Hussein S, Bussey H. Genetics; 2004 May 29; 167(1):35-49. PubMed ID: 15166135 [Abstract] [Full Text] [Related]
12. Natural products targeting the synthesis of β(1,3)-D-glucan and chitin of the fungal cell wall. Existing drugs and recent findings. Curto MÁ, Butassi E, Ribas JC, Svetaz LA, Cortés JCG. Phytomedicine; 2021 Jul 15; 88():153556. PubMed ID: 33958276 [Abstract] [Full Text] [Related]
13. Yeast species-specific, differential inhibition of β-1,3-glucan synthesis by poacic acid and caspofungin. Lee KK, Kubo K, Abdelaziz JA, Cunningham I, de Silva Dantas A, Chen X, Okada H, Ohya Y, Gow NAR. Cell Surf; 2018 Sep 15; 3():12-25. PubMed ID: 30370375 [Abstract] [Full Text] [Related]
15. A novel connection between the Cell Wall Integrity and the PKA pathways regulates cell wall stress response in yeast. García R, Bravo E, Diez-Muñiz S, Nombela C, Rodríguez-Peña JM, Arroyo J. Sci Rep; 2017 Jul 18; 7(1):5703. PubMed ID: 28720901 [Abstract] [Full Text] [Related]
16. Puupehenone, a Marine-Sponge-Derived Sesquiterpene Quinone, Potentiates the Antifungal Drug Caspofungin by Disrupting Hsp90 Activity and the Cell Wall Integrity Pathway. Tripathi SK, Feng Q, Liu L, Levin DE, Roy KK, Doerksen RJ, Baerson SR, Shi X, Pan X, Xu WH, Li XC, Clark AM, Agarwal AK. mSphere; 2020 Jan 08; 5(1):. PubMed ID: 31915228 [Abstract] [Full Text] [Related]
17. A novel calcineurin-independent activity of cyclosporin A in Saccharomyces cerevisiae. Singh-Babak SD, Shekhar T, Smith AM, Giaever G, Nislow C, Cowen LE. Mol Biosyst; 2012 Oct 08; 8(10):2575-84. PubMed ID: 22751784 [Abstract] [Full Text] [Related]
18. Caspofungin-induced β(1,3)-glucan exposure in Candida albicans is driven by increased chitin levels. Wagner AS, Lumsdaine SW, Mangrum MM, Reynolds TB. mBio; 2023 Aug 31; 14(4):e0007423. PubMed ID: 37377417 [Abstract] [Full Text] [Related]
19. Nanoscale effects of caspofungin against two yeast species, Saccharomyces cerevisiae and Candida albicans. Formosa C, Schiavone M, Martin-Yken H, François JM, Duval RE, Dague E. Antimicrob Agents Chemother; 2013 Aug 31; 57(8):3498-506. PubMed ID: 23669379 [Abstract] [Full Text] [Related]
20. Increase in chitin as an essential response to defects in assembly of cell wall polymers in the ggp1delta mutant of Saccharomyces cerevisiae. Popolo L, Gilardelli D, Bonfante P, Vai M. J Bacteriol; 1997 Jan 31; 179(2):463-9. PubMed ID: 8990299 [Abstract] [Full Text] [Related] Page: [Next] [New Search]