These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


132 related items for PubMed ID: 34388093

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Using Deep Learning Models to Predict Prosthetic Ankle Torque.
    Prasanna C, Realmuto J, Anderson A, Rombokas E, Klute G.
    Sensors (Basel); 2023 Sep 06; 23(18):. PubMed ID: 37765769
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Automated spatial localization of ankle muscle sites and model-based estimation of joint torque post-stroke via a wearable sensorised leg garment.
    Simonetti D, Hendriks M, Herijgers J, Cuerdo Del Rio C, Koopman B, Keijsers N, Sartori M.
    J Electromyogr Kinesiol; 2023 Oct 06; 72():102808. PubMed ID: 37573851
    [Abstract] [Full Text] [Related]

  • 7. Estimation of Joint Torque by EMG-Driven Neuromusculoskeletal Models and LSTM Networks.
    Zhang L, Soselia D, Wang R, Gutierrez-Farewik EM.
    IEEE Trans Neural Syst Rehabil Eng; 2023 Oct 06; 31():3722-3731. PubMed ID: 37708013
    [Abstract] [Full Text] [Related]

  • 8. Estimation of the Continuous Walking Angle of Knee and Ankle (Talocrural Joint, Subtalar Joint) of a Lower-Limb Exoskeleton Robot Using a Neural Network.
    Lee T, Kim I, Lee SH.
    Sensors (Basel); 2021 Apr 16; 21(8):. PubMed ID: 33923587
    [Abstract] [Full Text] [Related]

  • 9. Ankle torque forecasting using time-delayed neural networks.
    Zarshenas H, Ruddy BP, Kempa-Liehr AW, Besier TF.
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul 16; 2020():4854-4857. PubMed ID: 33019077
    [Abstract] [Full Text] [Related]

  • 10. From Simulation to Reality: Predicting Torque With Fatigue Onset via Transfer Learning.
    Kearney KM, Diaz TO, Harley JB, Nichols JA.
    IEEE Trans Neural Syst Rehabil Eng; 2024 Jul 16; 32():3669-3676. PubMed ID: 39302781
    [Abstract] [Full Text] [Related]

  • 11. Influence of Input Features and EMG Type on Ankle Joint Torque Prediction With Support Vector Regression.
    Kizyte A, Lei Y, Wang R.
    IEEE Trans Neural Syst Rehabil Eng; 2023 Jul 16; 31():4286-4294. PubMed ID: 37815967
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Model-Based Estimation of Ankle Joint Stiffness.
    Misgeld BJ, Zhang T, Lüken MJ, Leonhardt S.
    Sensors (Basel); 2017 Mar 29; 17(4):. PubMed ID: 28353683
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Automated estimation of ankle muscle EMG envelopes and resulting plantar-dorsi flexion torque from 64 garment-embedded electrodes uniformly distributed around the human leg.
    Simonetti D, Koopman B, Sartori M.
    J Electromyogr Kinesiol; 2022 Dec 29; 67():102701. PubMed ID: 36096035
    [Abstract] [Full Text] [Related]

  • 16. The effect of running shoes on lower extremity joint torques.
    Kerrigan DC, Franz JR, Keenan GS, Dicharry J, Della Croce U, Wilder RP.
    PM R; 2009 Dec 29; 1(12):1058-63. PubMed ID: 20006314
    [Abstract] [Full Text] [Related]

  • 17. Real-time conversion of inertial measurement unit data to ankle joint angles using deep neural networks.
    Senanayake D, Halgamuge S, Ackland DC.
    J Biomech; 2021 Aug 26; 125():110552. PubMed ID: 34237661
    [Abstract] [Full Text] [Related]

  • 18. A probabilistic method to estimate gait kinetics in the absence of ground reaction force measurements.
    Tanghe K, Afschrift M, Jonkers I, De Groote F, De Schutter J, Aertbeliën E.
    J Biomech; 2019 Nov 11; 96():109327. PubMed ID: 31526586
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Lower Body Kinematics Monitoring in Running Using Fabric-Based Wearable Sensors and Deep Convolutional Neural Networks.
    Gholami M, Rezaei A, Cuthbert TJ, Napier C, Menon C.
    Sensors (Basel); 2019 Dec 03; 19(23):. PubMed ID: 31816931
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.