These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


160 related items for PubMed ID: 34389763

  • 1. Superconductivity in LiGa2Ir Heusler type compound with VEC = 16.
    Górnicka K, Kuderowicz G, Winiarski MJ, Wiendlocha B, Klimczuk T.
    Sci Rep; 2021 Aug 13; 11(1):16517. PubMed ID: 34389763
    [Abstract] [Full Text] [Related]

  • 2. Superconductivity in Heusler compound ScAu2Al.
    Bag B, Loke R, Singh B, Thamizhavel A, Singh B, Ramakrishnan S.
    J Phys Condens Matter; 2022 Mar 08; 34(19):. PubMed ID: 35176733
    [Abstract] [Full Text] [Related]

  • 3. Physical properties and electronic band structure of noncentrosymmetric Th7Co3 superconductor.
    Sahakyan M, Tran VH.
    J Phys Condens Matter; 2016 May 25; 28(20):205701. PubMed ID: 27120582
    [Abstract] [Full Text] [Related]

  • 4. Two-gap superconductivity in Ag1-x Mo6S8 Chevrel phase.
    Feig M, Bobnar M, Veremchuk I, Hennig C, Burkhardt U, Starke R, Kundys B, Leithe-Jasper A, Gumeniuk R.
    J Phys Condens Matter; 2017 Dec 13; 29(49):495603. PubMed ID: 29099390
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Superconducting-state properties and electronic band structure calculations of a noncentrosymmetric Th7Ni3 compound.
    Idczak R, Sahakyan M, Tran VH.
    J Phys Condens Matter; 2018 Nov 28; 30(47):475802. PubMed ID: 30387439
    [Abstract] [Full Text] [Related]

  • 7. Peculiar phase diagram with isolated superconducting regions in ThFeAsN1-x O x.
    Li BZ, Wang ZC, Wang JL, Zhang FX, Wang DZ, Zhang FY, Sun YP, Jing Q, Zhang HF, Tan SG, Li YK, Feng CM, Mei YX, Wang C, Cao GH.
    J Phys Condens Matter; 2018 Jun 27; 30(25):255602. PubMed ID: 29749964
    [Abstract] [Full Text] [Related]

  • 8. First-Principles Calculations to Investigate the Stability and Thermodynamic Properties of a Newly Exposed Lithium-Gallium-Iridium-Based Full-Heusler Compound.
    Islam MAU, Islam MR, das O, Kato S, Kishi N, Soga T.
    ACS Omega; 2023 Jun 20; 8(24):21885-21897. PubMed ID: 37360439
    [Abstract] [Full Text] [Related]

  • 9. Nodeless superconductivity in the cage-type superconductor Sc5Ru6Sn18 with preserved time-reversal symmetry.
    Kumar D, Kuo CN, Astuti F, Shang T, Lee MK, Lue CS, Watanabe I, Barker JAT, Shiroka T, Chang LJ.
    J Phys Condens Matter; 2018 Aug 08; 30(31):315803. PubMed ID: 29947614
    [Abstract] [Full Text] [Related]

  • 10. Non-centrosymmetric superconductor Th[Formula: see text]Be[Formula: see text]Pt[Formula: see text] and heavy-fermion U[Formula: see text]Be[Formula: see text]Pt[Formula: see text] cage compounds.
    Koželj P, Juckel M, Amon A, Prots Y, Ormeci A, Burkhardt U, Brando M, Leithe-Jasper A, Grin Y, Svanidze E.
    Sci Rep; 2021 Nov 16; 11(1):22352. PubMed ID: 34785675
    [Abstract] [Full Text] [Related]

  • 11. Prediction of phonon-mediated superconductivity in new Ti-based M[Formula: see text]AX phases.
    Karaca E, Byrne PJP, Hasnip PJ, Probert MIJ.
    Sci Rep; 2022 Aug 01; 12(1):13198. PubMed ID: 35915155
    [Abstract] [Full Text] [Related]

  • 12. First-principles study of the electronic, vibrational, electron-phonon interaction and thermodynamics properties of ZrNi(2)Ga.
    Ming W, Liu Y, Zhang W, Zhao J, Yao Y.
    J Phys Condens Matter; 2009 Feb 18; 21(7):075501. PubMed ID: 21817328
    [Abstract] [Full Text] [Related]

  • 13. Superconductivity and the upper critical field in the chiral noncentrosymmetric superconductor NbRh2B2.
    Mayoh DA, Pearce MJ, Götze K, Hillier AD, Balakrishnan G, Lees MR.
    J Phys Condens Matter; 2019 Nov 20; 31(46):465601. PubMed ID: 31425149
    [Abstract] [Full Text] [Related]

  • 14. Polaronic behavior in a weak-coupling superconductor.
    Swartz AG, Inoue H, Merz TA, Hikita Y, Raghu S, Devereaux TP, Johnston S, Hwang HY.
    Proc Natl Acad Sci U S A; 2018 Feb 13; 115(7):1475-1480. PubMed ID: 29382769
    [Abstract] [Full Text] [Related]

  • 15. Ir 5d-band derived superconductivity in LaIr3.
    Bhattacharyya A, Adroja DT, Biswas PK, Sato YJ, Lees MR, Aoki D, Hillier AD.
    J Phys Condens Matter; 2020 Feb 06; 32(6):065602. PubMed ID: 31509814
    [Abstract] [Full Text] [Related]

  • 16. Superconductivity in CaBi2.
    Winiarski MJ, Wiendlocha B, Gołąb S, Kushwaha SK, Wiśniewski P, Kaczorowski D, Thompson JD, Cava RJ, Klimczuk T.
    Phys Chem Chem Phys; 2016 Aug 03; 18(31):21737-45. PubMed ID: 27435423
    [Abstract] [Full Text] [Related]

  • 17. Superconductivity at 10.4 K in a novel quasi-one-dimensional ternary molybdenum pnictide K2Mo3As3.
    Mu QG, Ruan BB, Zhao K, Pan BJ, Liu T, Shan L, Chen GF, Ren ZA.
    Sci Bull (Beijing); 2018 Aug 15; 63(15):952-956. PubMed ID: 36658890
    [Abstract] [Full Text] [Related]

  • 18. CoBi3--the first binary compound of cobalt with bismuth: high-pressure synthesis and superconductivity.
    Tencé S, Janson O, Krellner C, Rosner H, Schwarz U, Grin Y, Steglich F.
    J Phys Condens Matter; 2014 Oct 01; 26(39):395701. PubMed ID: 25204566
    [Abstract] [Full Text] [Related]

  • 19. Structure-property correlations in phase-pure B-doped Q-carbon high-temperature superconductor with a record Tc = 55 K.
    Bhaumik A, Narayan J.
    Nanoscale; 2019 May 09; 11(18):9141-9154. PubMed ID: 31038149
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.