These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
233 related items for PubMed ID: 34390209
1. L-malic acid production from xylose by engineered Saccharomyces cerevisiae. Kang NK, Lee JW, Ort DR, Jin YS. Biotechnol J; 2022 Mar; 17(3):e2000431. PubMed ID: 34390209 [Abstract] [Full Text] [Related]
2. Malic acid production by Saccharomyces cerevisiae: engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export. Zelle RM, de Hulster E, van Winden WA, de Waard P, Dijkema C, Winkler AA, Geertman JM, van Dijken JP, Pronk JT, van Maris AJ. Appl Environ Microbiol; 2008 May; 74(9):2766-77. PubMed ID: 18344340 [Abstract] [Full Text] [Related]
3. [Construction and fermentation control of reductive TCA pathway for malic acid production in Saccharomyces cerevisiae]. Yan D, Wang C, Zhou J, Liu Y, Yang M, Xing J. Sheng Wu Gong Cheng Xue Bao; 2013 Oct; 29(10):1484-93. PubMed ID: 24432663 [Abstract] [Full Text] [Related]
4. Engineering rTCA pathway and C4-dicarboxylate transporter for L-malic acid production. Chen X, Wang Y, Dong X, Hu G, Liu L. Appl Microbiol Biotechnol; 2017 May; 101(10):4041-4052. PubMed ID: 28229207 [Abstract] [Full Text] [Related]
5. Production of 2,3-butanediol from xylose by engineered Saccharomyces cerevisiae. Kim SJ, Seo SO, Park YC, Jin YS, Seo JH. J Biotechnol; 2014 Dec 20; 192 Pt B():376-82. PubMed ID: 24480571 [Abstract] [Full Text] [Related]
6. Lactic acid production from cellobiose and xylose by engineered Saccharomyces cerevisiae. Turner TL, Zhang GC, Oh EJ, Subramaniam V, Adiputra A, Subramaniam V, Skory CD, Jang JY, Yu BJ, Park I, Jin YS. Biotechnol Bioeng; 2016 May 20; 113(5):1075-83. PubMed ID: 26524688 [Abstract] [Full Text] [Related]
7. Toward "homolactic" fermentation of glucose and xylose by engineered Saccharomyces cerevisiae harboring a kinetically efficient l-lactate dehydrogenase within pdc1-pdc5 deletion background. Novy V, Brunner B, Müller G, Nidetzky B. Biotechnol Bioeng; 2017 Jan 20; 114(1):163-171. PubMed ID: 27426989 [Abstract] [Full Text] [Related]
8. Highly efficient neutralizer-free l-malic acid production using engineered Saccharomyces cerevisiae. Sun L, Zhang Q, Kong X, Liu Y, Li J, Du G, Lv X, Ledesma-Amaro R, Chen J, Liu L. Bioresour Technol; 2023 Feb 20; 370():128580. PubMed ID: 36608859 [Abstract] [Full Text] [Related]
9. Production of fuels and chemicals from xylose by engineered Saccharomyces cerevisiae: a review and perspective. Kwak S, Jin YS. Microb Cell Fact; 2017 May 11; 16(1):82. PubMed ID: 28494761 [Abstract] [Full Text] [Related]
10. Ethanol production from lignocellulosic hydrolysates using engineered Saccharomyces cerevisiae harboring xylose isomerase-based pathway. Ko JK, Um Y, Woo HM, Kim KH, Lee SM. Bioresour Technol; 2016 Jun 11; 209():290-6. PubMed ID: 26990396 [Abstract] [Full Text] [Related]
11. Continuous co-fermentation of cellobiose and xylose by engineered Saccharomyces cerevisiae. Ha SJ, Kim SR, Kim H, Du J, Cate JH, Jin YS. Bioresour Technol; 2013 Dec 11; 149():525-31. PubMed ID: 24140899 [Abstract] [Full Text] [Related]
12. Metabolic engineering of Saccharomyces cerevisiae ethanol strains PE-2 and CAT-1 for efficient lignocellulosic fermentation. Romaní A, Pereira F, Johansson B, Domingues L. Bioresour Technol; 2015 Mar 11; 179():150-158. PubMed ID: 25536512 [Abstract] [Full Text] [Related]
13. In-situ muconic acid extraction reveals sugar consumption bottleneck in a xylose-utilizing Saccharomyces cerevisiae strain. Nicolaï T, Deparis Q, Foulquié-Moreno MR, Thevelein JM. Microb Cell Fact; 2021 Jun 07; 20(1):114. PubMed ID: 34098954 [Abstract] [Full Text] [Related]
14. High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae. Kim SR, Ha SJ, Kong II, Jin YS. Metab Eng; 2012 Jul 07; 14(4):336-43. PubMed ID: 22521925 [Abstract] [Full Text] [Related]
15. Metabolic Engineering of Trichoderma reesei for l-Malic Acid Production. Chen Y, Han A, Wang M, Wei D, Wang W. J Agric Food Chem; 2023 Mar 08; 71(9):4043-4050. PubMed ID: 36812909 [Abstract] [Full Text] [Related]
16. Xylose fermentation by Saccharomyces cerevisiae using endogenous xylose-assimilating genes. Konishi J, Fukuda A, Mutaguchi K, Uemura T. Biotechnol Lett; 2015 Aug 08; 37(8):1623-30. PubMed ID: 25994575 [Abstract] [Full Text] [Related]
17. Co-fermentation of cellobiose and xylose by mixed culture of recombinant Saccharomyces cerevisiae and kinetic modeling. Chen Y, Wu Y, Zhu B, Zhang G, Wei N. PLoS One; 2018 Aug 08; 13(6):e0199104. PubMed ID: 29940003 [Abstract] [Full Text] [Related]
18. Implementation of a transhydrogenase-like shunt to counter redox imbalance during xylose fermentation in Saccharomyces cerevisiae. Suga H, Matsuda F, Hasunuma T, Ishii J, Kondo A. Appl Microbiol Biotechnol; 2013 Feb 08; 97(4):1669-78. PubMed ID: 22851014 [Abstract] [Full Text] [Related]
19. Xylose assimilation enhances the production of isobutanol in engineered Saccharomyces cerevisiae. Lane S, Zhang Y, Yun EJ, Ziolkowski L, Zhang G, Jin YS, Avalos JL. Biotechnol Bioeng; 2020 Feb 08; 117(2):372-381. PubMed ID: 31631318 [Abstract] [Full Text] [Related]
20. Enhanced xylose fermentation by engineered yeast expressing NADH oxidase through high cell density inoculums. Zhang GC, Turner TL, Jin YS. J Ind Microbiol Biotechnol; 2017 Mar 08; 44(3):387-395. PubMed ID: 28070721 [Abstract] [Full Text] [Related] Page: [Next] [New Search]