These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


176 related items for PubMed ID: 34390353

  • 1. Relocation of dehydroquinate dehydratase to the periplasmic space improves dehydroshikimate production with Gluconobacter oxydans strain NBRC3244.
    Nakamura K, Nagaki K, Matsutani M, Adachi O, Kataoka N, Ano Y, Theeragool G, Matsushita K, Yakushi T.
    Appl Microbiol Biotechnol; 2021 Aug; 105(14-15):5883-5894. PubMed ID: 34390353
    [Abstract] [Full Text] [Related]

  • 2. Overexpression of a type II 3-dehydroquinate dehydratase enhances the biotransformation of quinate to 3-dehydroshikimate in Gluconobacter oxydans.
    Nishikura-Imamura S, Matsutani M, Insomphun C, Vangnai AS, Toyama H, Yakushi T, Abe T, Adachi O, Matsushita K.
    Appl Microbiol Biotechnol; 2014 Apr; 98(7):2955-63. PubMed ID: 24352733
    [Abstract] [Full Text] [Related]

  • 3. Periplasmic dehydroshikimate dehydratase combined with quinate oxidation in Gluconobacter oxydans for protocatechuate production.
    Nagaki K, Kataoka N, Theeragool G, Matsutani M, Ano Y, Matsushita K, Yakushi T.
    Biosci Biotechnol Biochem; 2022 Jul 22; 86(8):1151-1159. PubMed ID: 35675214
    [Abstract] [Full Text] [Related]

  • 4. The Auxiliary NADH Dehydrogenase Plays a Crucial Role in Redox Homeostasis of Nicotinamide Cofactors in the Absence of the Periplasmic Oxidation System in Gluconobacter oxydans NBRC3293.
    Sriherfyna FH, Matsutani M, Hirano K, Koike H, Kataoka N, Yamashita T, Nakamaru-Ogiso E, Matsushita K, Yakushi T.
    Appl Environ Microbiol; 2021 Jan 04; 87(2):. PubMed ID: 33127815
    [Abstract] [Full Text] [Related]

  • 5. A novel 3-dehydroquinate dehydratase catalyzing extracellular formation of 3-dehydroshikimate by oxidative fermentation of Gluconobacter oxydans IFO 3244.
    Adachi O, Ano Y, Toyama H, Matsushita K.
    Biosci Biotechnol Biochem; 2008 Jun 04; 72(6):1475-82. PubMed ID: 18540103
    [Abstract] [Full Text] [Related]

  • 6. Purification and characterization of membrane-bound 3-dehydroshikimate dehydratase from Gluconobacter oxydans IFO 3244, a new enzyme catalyzing extracellular protocatechuate formation.
    Shinagawa E, Adachi O, Ano Y, Yakushi T, Matsushita K.
    Biosci Biotechnol Biochem; 2010 Jun 04; 74(5):1084-8. PubMed ID: 20460715
    [Abstract] [Full Text] [Related]

  • 7. Conversion of quinate to 3-dehydroshikimate by Ca-alginate-immobilized membrane of Gluconobacter oxydans IFO 3244 and subsequent asymmetric reduction of 3-dehydroshikimate to shikimate by immobilized cytoplasmic NADP-shikimate dehydrogenase.
    Adachi O, Ano Y, Shinagawa E, Yakushi T, Matsushita K.
    Biosci Biotechnol Biochem; 2010 Jun 04; 74(12):2438-44. PubMed ID: 21150112
    [Abstract] [Full Text] [Related]

  • 8. Cloning, expression, and characterization of a type II 3-dehydroquinate dehydratase gene from Streptomyces hygroscopicus.
    Florova G, Denoya CD, Morgenstern MR, Skinner DD, Reynolds KA.
    Arch Biochem Biophys; 1998 Feb 15; 350(2):298-306. PubMed ID: 9473305
    [Abstract] [Full Text] [Related]

  • 9. High shikimate production from quinate with two enzymatic systems of acetic acid bacteria.
    Adachi O, Ano Y, Toyama H, Matsushita K.
    Biosci Biotechnol Biochem; 2006 Oct 15; 70(10):2579-82. PubMed ID: 17031026
    [Abstract] [Full Text] [Related]

  • 10. Metabolic engineering of Gluconobacter oxydans 621H for increased biomass yield.
    Kiefler I, Bringer S, Bott M.
    Appl Microbiol Biotechnol; 2017 Jul 15; 101(13):5453-5467. PubMed ID: 28484812
    [Abstract] [Full Text] [Related]

  • 11. Overexpression of membrane-bound gluconate-2-dehydrogenase to enhance the production of 2-keto-D-gluconic acid by Gluconobacter oxydans.
    Li K, Mao X, Liu L, Lin J, Sun M, Wei D, Yang S.
    Microb Cell Fact; 2016 Jul 09; 15(1):121. PubMed ID: 27392695
    [Abstract] [Full Text] [Related]

  • 12. 3-dehydroquinate production by oxidative fermentation and further conversion of 3-dehydroquinate to the intermediates in the shikimate pathway.
    Adachi O, Tanasupawat S, Yoshihara N, Toyama H, Matsushita K.
    Biosci Biotechnol Biochem; 2003 Oct 09; 67(10):2124-31. PubMed ID: 14586099
    [Abstract] [Full Text] [Related]

  • 13. Membrane-bound sorbitol dehydrogenase is responsible for the unique oxidation of D-galactitol to L-xylo-3-hexulose and D-tagatose in Gluconobacter oxydans.
    Xu Y, Ji L, Xu S, Bilal M, Ehrenreich A, Deng Z, Cheng H.
    Biochim Biophys Acta Gen Subj; 2023 Feb 09; 1867(2):130289. PubMed ID: 36503080
    [Abstract] [Full Text] [Related]

  • 14. FNR-Type Regulator GoxR of the Obligatorily Aerobic Acetic Acid Bacterium Gluconobacter oxydans Affects Expression of Genes Involved in Respiration and Redox Metabolism.
    Schweikert S, Kranz A, Yakushi T, Filipchyk A, Polen T, Etterich H, Bringer S, Bott M.
    Appl Environ Microbiol; 2021 May 11; 87(11):. PubMed ID: 33741613
    [Abstract] [Full Text] [Related]

  • 15. Combinatorial metabolic engineering of industrial Gluconobacter oxydans DSM2343 for boosting 5-keto-D-gluconic acid accumulation.
    Yuan J, Wu M, Lin J, Yang L.
    BMC Biotechnol; 2016 May 17; 16(1):42. PubMed ID: 27189063
    [Abstract] [Full Text] [Related]

  • 16. A tunable L-arabinose-inducible expression plasmid for the acetic acid bacterium Gluconobacter oxydans.
    Fricke PM, Link T, Gätgens J, Sonntag C, Otto M, Bott M, Polen T.
    Appl Microbiol Biotechnol; 2020 Nov 17; 104(21):9267-9282. PubMed ID: 32974745
    [Abstract] [Full Text] [Related]

  • 17. Improved heterologous expression of the membrane-bound quinoprotein quinate dehydrogenase from Gluconobacter oxydans.
    Yakushi T, Komatsu K, Matsutani M, Kataoka N, Vangnai AS, Toyama H, Adachi O, Matsushita K.
    Protein Expr Purif; 2018 May 17; 145():100-107. PubMed ID: 29366965
    [Abstract] [Full Text] [Related]

  • 18. [Synthesis of pyrroloquinoline quinone by recombinant Gluconobacter oxydans].
    Ye R, Li F, Ding F, Zhao Z, Chen S, Yuan J.
    Sheng Wu Gong Cheng Xue Bao; 2020 Jun 25; 36(6):1138-1149. PubMed ID: 32597063
    [Abstract] [Full Text] [Related]

  • 19. Global mRNA decay and 23S rRNA fragmentation in Gluconobacter oxydans 621H.
    Kranz A, Steinmann A, Degner U, Mengus-Kaya A, Matamouros S, Bott M, Polen T.
    BMC Genomics; 2018 Oct 16; 19(1):753. PubMed ID: 30326828
    [Abstract] [Full Text] [Related]

  • 20. L-Erythrulose production with a multideletion strain of Gluconobacter oxydans.
    Burger C, Kessler C, Gruber S, Ehrenreich A, Liebl W, Weuster-Botz D.
    Appl Microbiol Biotechnol; 2019 Jun 16; 103(11):4393-4404. PubMed ID: 31001743
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.