These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
167 related items for PubMed ID: 34412288
1. Classical description of the parameter space geometry in the Dicke and Lipkin-Meshkov-Glick models. Gonzalez D, Gutiérrez-Ruiz D, Vergara JD. Phys Rev E; 2021 Jul; 104(1-1):014113. PubMed ID: 34412288 [Abstract] [Full Text] [Related]
2. Exact spectrum of the Lipkin-Meshkov-Glick model in the thermodynamic limit and finite-size corrections. Ribeiro P, Vidal J, Mosseri R. Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 1):021106. PubMed ID: 18850785 [Abstract] [Full Text] [Related]
3. Global quantum discord in the Lipkin-Meshkov-Glick model at zero and finite temperatures. Bao J, Liu YH, Guo B. J Phys Condens Matter; 2021 Sep 27; 33(49):. PubMed ID: 34517354 [Abstract] [Full Text] [Related]
4. Combining Critical and Quantum Metrology. Hotter C, Ritsch H, Gietka K. Phys Rev Lett; 2024 Feb 09; 132(6):060801. PubMed ID: 38394596 [Abstract] [Full Text] [Related]
6. Excited-state quantum phase transitions in the anharmonic Lipkin-Meshkov-Glick model: Static aspects. Gamito J, Khalouf-Rivera J, Arias JM, Pérez-Fernández P, Pérez-Bernal F. Phys Rev E; 2022 Oct 09; 106(4-1):044125. PubMed ID: 36397542 [Abstract] [Full Text] [Related]
7. Many-body reduced fidelity susceptibility in Lipkin-Meshkov-Glick model. Ma J, Wang X, Gu SJ. Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug 09; 80(2 Pt 1):021124. PubMed ID: 19792094 [Abstract] [Full Text] [Related]
8. Quantum thermodynamic cycle with quantum phase transition. Ma YH, Su SH, Sun CP. Phys Rev E; 2017 Aug 09; 96(2-1):022143. PubMed ID: 28950560 [Abstract] [Full Text] [Related]
9. Role of mixed permutation symmetry sectors in the thermodynamic limit of critical three-level Lipkin-Meshkov-Glick atom models. Calixto M, Mayorgas A, Guerrero J. Phys Rev E; 2021 Jan 09; 103(1-1):012116. PubMed ID: 33601600 [Abstract] [Full Text] [Related]
10. Nonadiabatic dynamics of the excited states for the Lipkin-Meshkov-Glick model. Kopylov W, Schaller G, Brandes T. Phys Rev E; 2017 Jul 09; 96(1-1):012153. PubMed ID: 29347272 [Abstract] [Full Text] [Related]
11. Complexity in the Lipkin-Meshkov-Glick model. Pal K, Pal K, Sarkar T. Phys Rev E; 2023 Apr 09; 107(4-1):044130. PubMed ID: 37198862 [Abstract] [Full Text] [Related]
12. Positive quantum Lyapunov exponents in experimental systems with a regular classical limit. Pilatowsky-Cameo S, Chávez-Carlos J, Bastarrachea-Magnani MA, Stránský P, Lerma-Hernández S, Santos LF, Hirsch JG. Phys Rev E; 2020 Jan 09; 101(1-1):010202. PubMed ID: 32069677 [Abstract] [Full Text] [Related]
13. Excited-state quantum phase transitions in Dicke superradiance models. Brandes T. Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep 09; 88(3):032133. PubMed ID: 24125239 [Abstract] [Full Text] [Related]
14. Quantum criticality of the Lipkin-Meshkov-Glick model in terms of fidelity susceptibility. Kwok HM, Ning WQ, Gu SJ, Lin HQ. Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep 09; 78(3 Pt 1):032103. PubMed ID: 18851088 [Abstract] [Full Text] [Related]
15. Scaling behavior for a class of quantum phase transitions. Wang WG, Qin P, Wang Q, Benenti G, Casati G. Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug 09; 86(2 Pt 1):021124. PubMed ID: 23005739 [Abstract] [Full Text] [Related]
16. Analogies of the classical Euler top with a rotor to spin squeezing and quantum phase transitions in a generalized Lipkin-Meshkov-Glick model. Opatrný T, Richterek L, Opatrný M. Sci Rep; 2018 Jan 31; 8(1):1984. PubMed ID: 29386576 [Abstract] [Full Text] [Related]
17. Characterizing the Lipkin-Meshkov-Glick model excited-state quantum phase transition using dynamical and statistical properties of the diagonal entropy. Wang Q, Pérez-Bernal F. Phys Rev E; 2021 Mar 31; 103(3-1):032109. PubMed ID: 33862777 [Abstract] [Full Text] [Related]
18. Identifying the order of a quantum phase transition by means of Wehrl entropy in phase space. Castaños O, Calixto M, Pérez-Bernal F, Romera E. Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov 31; 92(5):052106. PubMed ID: 26651646 [Abstract] [Full Text] [Related]
19. ac-Driven quantum phase transition in the Lipkin-Meshkov-Glick model. Engelhardt G, Bastidas VM, Emary C, Brandes T. Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May 31; 87(5):052110. PubMed ID: 23767490 [Abstract] [Full Text] [Related]
20. Dynamical quantum phase transitions in the dissipative Lipkin-Meshkov-Glick model with proposed realization in optical cavity QED. Morrison S, Parkins AS. Phys Rev Lett; 2008 Feb 01; 100(4):040403. PubMed ID: 18352244 [Abstract] [Full Text] [Related] Page: [Next] [New Search]