These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


326 related items for PubMed ID: 34445525

  • 1. Biotechnological Production of Carotenoids Using Low Cost-Substrates Is Influenced by Cultivation Parameters: A Review.
    Igreja WS, Maia FA, Lopes AS, Chisté RC.
    Int J Mol Sci; 2021 Aug 17; 22(16):. PubMed ID: 34445525
    [Abstract] [Full Text] [Related]

  • 2. Production and extraction of carotenoids produced by microorganisms.
    Mussagy CU, Winterburn J, Santos-Ebinuma VC, Pereira JFB.
    Appl Microbiol Biotechnol; 2019 Feb 17; 103(3):1095-1114. PubMed ID: 30560452
    [Abstract] [Full Text] [Related]

  • 3. Metabolic engineering towards biotechnological production of carotenoids in microorganisms.
    Lee PC, Schmidt-Dannert C.
    Appl Microbiol Biotechnol; 2002 Oct 17; 60(1-2):1-11. PubMed ID: 12382037
    [Abstract] [Full Text] [Related]

  • 4. An update on microbial carotenoid production: application of recent metabolic engineering tools.
    Das A, Yoon SH, Lee SH, Kim JY, Oh DK, Kim SW.
    Appl Microbiol Biotechnol; 2007 Dec 17; 77(3):505-12. PubMed ID: 17912511
    [Abstract] [Full Text] [Related]

  • 5. Carotenoids from Rhodotorula and Phaffia: yeasts of biotechnological importance.
    Frengova GI, Beshkova DM.
    J Ind Microbiol Biotechnol; 2009 Feb 17; 36(2):163-80. PubMed ID: 18982370
    [Abstract] [Full Text] [Related]

  • 6. Industrially Important Fungal Carotenoids: Advancements in Biotechnological Production and Extraction.
    Naz T, Ullah S, Nazir Y, Li S, Iqbal B, Liu Q, Mohamed H, Song Y.
    J Fungi (Basel); 2023 May 16; 9(5):. PubMed ID: 37233289
    [Abstract] [Full Text] [Related]

  • 7. Transcriptomic and metabolomic analysis reveals the potential mechanisms underlying the improvement of β-carotene and torulene production in Rhodosporidiobolus colostri under low temperature treatment.
    Li C, Xu Y, Li Z, Cheng P, Yu G.
    Food Res Int; 2022 Jun 16; 156():111158. PubMed ID: 35651024
    [Abstract] [Full Text] [Related]

  • 8. Transcriptomic and Metabolomic Analyses Provide Insights into the Enhancement of Torulene and Torularhodin Production in Rhodotorula glutinis ZHK under Moderate Salt Conditions.
    Li C, Cheng P, Li Z, Xu Y, Sun Y, Qin D, Yu G.
    J Agric Food Chem; 2021 Sep 29; 69(38):11523-11533. PubMed ID: 34545740
    [Abstract] [Full Text] [Related]

  • 9. Diversity of Red Yeasts in Various Regions and Environments of Poland and Biotechnological Potential of the Isolated Strains.
    Kot AM, Sęk W, Kieliszek M, Błażejak S, Pobiega K, Brzezińska R.
    Appl Biochem Biotechnol; 2024 Jun 29; 196(6):3274-3316. PubMed ID: 37646889
    [Abstract] [Full Text] [Related]

  • 10. Biotechnological production of carotenoids by yeasts: an overview.
    Mata-Gómez LC, Montañez JC, Méndez-Zavala A, Aguilar CN.
    Microb Cell Fact; 2014 Jan 21; 13():12. PubMed ID: 24443802
    [Abstract] [Full Text] [Related]

  • 11. Torulene and torularhodin: "new" fungal carotenoids for industry?
    Kot AM, Błażejak S, Gientka I, Kieliszek M, Bryś J.
    Microb Cell Fact; 2018 Mar 27; 17(1):49. PubMed ID: 29587755
    [Abstract] [Full Text] [Related]

  • 12. Exploring the Valuable Carotenoids for the Large-Scale Production by Marine Microorganisms.
    Torregrosa-Crespo J, Montero Z, Fuentes JL, Reig García-Galbis M, Garbayo I, Vílchez C, Martínez-Espinosa RM.
    Mar Drugs; 2018 Jun 08; 16(6):. PubMed ID: 29890662
    [Abstract] [Full Text] [Related]

  • 13. Carotenoids from Cyanobacteria: Biotechnological Potential and Optimization Strategies.
    Pagels F, Vasconcelos V, Guedes AC.
    Biomolecules; 2021 May 15; 11(5):. PubMed ID: 34063485
    [Abstract] [Full Text] [Related]

  • 14. Agro-food wastes utilization by Blakeslea trispora for carotenoids production.
    Papaioannou EH, Liakopoulou-Kyriakides M.
    Acta Biochim Pol; 2012 May 15; 59(1):151-3. PubMed ID: 22428133
    [Abstract] [Full Text] [Related]

  • 15. Torularhodin and torulene are the major contributors to the carotenoid pool of marine Rhodosporidium babjevae (Golubev).
    Sperstad S, Lutnaes BF, Stormo SK, Liaaen-Jensen S, Landfald B.
    J Ind Microbiol Biotechnol; 2006 Apr 15; 33(4):269-73. PubMed ID: 16341835
    [Abstract] [Full Text] [Related]

  • 16. A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health.
    Rodriguez-Concepcion M, Avalos J, Bonet ML, Boronat A, Gomez-Gomez L, Hornero-Mendez D, Limon MC, Meléndez-Martínez AJ, Olmedilla-Alonso B, Palou A, Ribot J, Rodrigo MJ, Zacarias L, Zhu C.
    Prog Lipid Res; 2018 Apr 15; 70():62-93. PubMed ID: 29679619
    [Abstract] [Full Text] [Related]

  • 17. Biosynthetic Pathway of Carotenoids in Rhodotorula and Strategies for Enhanced Their Production.
    Tang W, Wang Y, Zhang J, Cai Y, He Z.
    J Microbiol Biotechnol; 2019 Apr 28; 29(4):507-517. PubMed ID: 30856706
    [Abstract] [Full Text] [Related]

  • 18. Carotenoids from microalgae: A review of recent developments.
    Gong M, Bassi A.
    Biotechnol Adv; 2016 Dec 28; 34(8):1396-1412. PubMed ID: 27816618
    [Abstract] [Full Text] [Related]

  • 19. Transcriptomic and metabolomic analyses reveal the positive effect of moderate concentration of sodium chloride treatment on the production of β-carotene, torulene, and torularhodin in oleaginous red yeast Rhodosporidiobolus odoratus XQR.
    Zhao D, Li C, Zeng N, Wang D, Yu G, Zhang N, Li B.
    Food Chem (Oxf); 2024 Dec 30; 9():100221. PubMed ID: 39399738
    [Abstract] [Full Text] [Related]

  • 20. Carotenoids from Haloarchaea and Their Potential in Biotechnology.
    Rodrigo-Baños M, Garbayo I, Vílchez C, Bonete MJ, Martínez-Espinosa RM.
    Mar Drugs; 2015 Aug 25; 13(9):5508-32. PubMed ID: 26308012
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.