These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
139 related items for PubMed ID: 34482314
1. Establishing the Minimum Intensity of Transcranial Magnetic Stimulation Superconditioning Pulses to Effect Inhibition and Facilitation of Motor Evoked Potentials. Calancie BM, Chin S, Wang D. J Clin Neurophysiol; 2023 May 01; 40(4):331-338. PubMed ID: 34482314 [Abstract] [Full Text] [Related]
2. Four-pulse transcranial magnetic stimulation using multiple conditioning inputs. Normative MEP responses. Calancie B, Wang D, Young E, Alexeeva N. Exp Brain Res; 2018 Apr 01; 236(4):1205-1218. PubMed ID: 29473092 [Abstract] [Full Text] [Related]
3. Superconditioning TMS for examining upper motor neuron function in MND. Calancie B, Young E, Watson ML, Wang D, Alexeeva N. Exp Brain Res; 2019 Aug 01; 237(8):2087-2103. PubMed ID: 31175383 [Abstract] [Full Text] [Related]
4. Corticomotor responses to triple-pulse transcranial magnetic stimulation: Effects of interstimulus interval and stimulus intensity. Sacco P, Turner D, Rothwell J, Thickbroom G. Brain Stimul; 2009 Jan 01; 2(1):36-40. PubMed ID: 20633401 [Abstract] [Full Text] [Related]
5. Multipulse transcranial magnetic stimulation of human motor cortex produces short-latency corticomotor facilitation via two distinct mechanisms. Kesselheim J, Takemi M, Christiansen L, Karabanov AN, Siebner HR. J Neurophysiol; 2023 Feb 01; 129(2):410-420. PubMed ID: 36629338 [Abstract] [Full Text] [Related]
6. Does interhemispheric communication relate to the bilateral function of muscles? A study of scapulothoracic muscles using transcranial magnetic stimulation. Matthews D, Murtagh P, Risso A, Jones G, Alexander CM. J Electromyogr Kinesiol; 2013 Dec 01; 23(6):1370-4. PubMed ID: 23954022 [Abstract] [Full Text] [Related]
7. Spread of electrical activity at cortical level after repetitive magnetic stimulation in normal subjects. Lorenzano C, Gilio F, Inghilleri M, Conte A, Fofi L, Manfredi M, Berardelli A. Exp Brain Res; 2002 Nov 01; 147(2):186-92. PubMed ID: 12410333 [Abstract] [Full Text] [Related]
8. Modulation of the cortical silent period elicited by single- and paired-pulse transcranial magnetic stimulation. Kojima S, Onishi H, Sugawara K, Kirimoto H, Suzuki M, Tamaki H. BMC Neurosci; 2013 Apr 02; 14():43. PubMed ID: 23547559 [Abstract] [Full Text] [Related]
9. Efficient Mapping of the Motor Cortex with Navigated Biphasic Paired-Pulse Transcranial Magnetic Stimulation. Pitkänen M, Kallioniemi E, Järnefelt G, Karhu J, Julkunen P. Brain Topogr; 2018 Nov 02; 31(6):963-971. PubMed ID: 29971634 [Abstract] [Full Text] [Related]
10. Preconditioning repetitive transcranial magnetic stimulation of premotor cortex can reduce but not enhance short-term facilitation of primary motor cortex. Suppa A, Bologna M, Gilio F, Lorenzano C, Rothwell JC, Berardelli A. J Neurophysiol; 2008 Feb 02; 99(2):564-70. PubMed ID: 18057113 [Abstract] [Full Text] [Related]
11. Convergence of flexor reflex and corticospinal inputs on tibialis anterior network in humans. Mackey AS, Uttaro D, McDonough MP, Krivis LI, Knikou M. Clin Neurophysiol; 2016 Jan 02; 127(1):706-715. PubMed ID: 26122072 [Abstract] [Full Text] [Related]
12. The effect of experimental pain on short-interval intracortical inhibition with multi-locus transcranial magnetic stimulation. Salo KS, Vaalto SMI, Koponen LM, Nieminen JO, Ilmoniemi RJ. Exp Brain Res; 2019 Jun 02; 237(6):1503-1510. PubMed ID: 30919012 [Abstract] [Full Text] [Related]
13. High-intensity, low-frequency repetitive transcranial magnetic stimulation enhances excitability of the human corticospinal pathway. D'Amico JM, Dongés SC, Taylor JL. J Neurophysiol; 2020 May 01; 123(5):1969-1978. PubMed ID: 32292098 [Abstract] [Full Text] [Related]
14. Conditioning the cortical silent period with paired transcranial magnetic stimulation. Silbert BI, Thickbroom GW. Brain Stimul; 2013 Jul 01; 6(4):541-4. PubMed ID: 23092703 [Abstract] [Full Text] [Related]
15. Cumulative effects of single TMS pulses during beta-tACS are stimulation intensity-dependent. Raco V, Bauer R, Norim S, Gharabaghi A. Brain Stimul; 2017 Jul 01; 10(6):1055-1060. PubMed ID: 28779945 [Abstract] [Full Text] [Related]
16. Demonstration of facilitatory I wave interaction in the human motor cortex by paired transcranial magnetic stimulation. Ziemann U, Tergau F, Wassermann EM, Wischer S, Hildebrandt J, Paulus W. J Physiol; 1998 Aug 15; 511 ( Pt 1)(Pt 1):181-90. PubMed ID: 9679173 [Abstract] [Full Text] [Related]
17. Facilitatory effect of paired-pulse stimulation by transcranial magnetic stimulation with biphasic wave-form. Julkunen P, Järnefelt G, Savolainen P, Laine J, Karhu J. Med Eng Phys; 2016 Aug 15; 38(8):813-7. PubMed ID: 27215172 [Abstract] [Full Text] [Related]
18. Aftereffects of Intermittent Theta-Burst Stimulation in Adjacent, Non-Target Muscles. Morris TP, Davila-Pérez P, Jannati A, Menardi A, Pascual-Leone A, Fried PJ. Neuroscience; 2019 Oct 15; 418():157-165. PubMed ID: 31476358 [Abstract] [Full Text] [Related]
19. Short-latency sensory afferent inhibition: conditioning stimulus intensity, recording site, and effects of 1 Hz repetitive TMS. Fischer M, Orth M. Brain Stimul; 2011 Oct 15; 4(4):202-9. PubMed ID: 22032735 [Abstract] [Full Text] [Related]
20. Reliability of single- and paired-pulse transcranial magnetic stimulation for the assessment of knee extensor muscle function. Temesi J, Ly SN, Millet GY. J Neurol Sci; 2017 Apr 15; 375():442-449. PubMed ID: 28320184 [Abstract] [Full Text] [Related] Page: [Next] [New Search]