These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


671 related items for PubMed ID: 34488759

  • 1. Profiling of chromatin accessibility identifies transcription factor binding sites across the genome of Aspergillus species.
    Huang L, Li X, Dong L, Wang B, Pan L.
    BMC Biol; 2021 Sep 06; 19(1):189. PubMed ID: 34488759
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Detect accessible chromatin using ATAC-sequencing, from principle to applications.
    Sun Y, Miao N, Sun T.
    Hereditas; 2019 Sep 06; 156():29. PubMed ID: 31427911
    [Abstract] [Full Text] [Related]

  • 8. Identification of Open Chromatin Regions in Plant Genomes Using ATAC-Seq.
    Bajic M, Maher KA, Deal RB.
    Methods Mol Biol; 2018 Sep 06; 1675():183-201. PubMed ID: 29052193
    [Abstract] [Full Text] [Related]

  • 9. Combining ATAC-seq with nuclei sorting for discovery of cis-regulatory regions in plant genomes.
    Lu Z, Hofmeister BT, Vollmers C, DuBois RM, Schmitz RJ.
    Nucleic Acids Res; 2017 Apr 07; 45(6):e41. PubMed ID: 27903897
    [Abstract] [Full Text] [Related]

  • 10. [Advances in assay for transposase-accessible chromatin with high-throughput sequencing].
    Wu J, Quan JP, Ye Y, Wu ZF, Yang J, Yang M, Zheng EQ.
    Yi Chuan; 2020 Apr 20; 42(4):333-346. PubMed ID: 32312702
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Interrogating the Accessible Chromatin Landscape of Eukaryote Genomes Using ATAC-seq.
    Marinov GK, Shipony Z.
    Methods Mol Biol; 2021 Apr 20; 2243():183-226. PubMed ID: 33606259
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. XL-DNase-seq: improved footprinting of dynamic transcription factors.
    Oh KS, Ha J, Baek S, Sung MH.
    Epigenetics Chromatin; 2019 Jun 04; 12(1):30. PubMed ID: 31164146
    [Abstract] [Full Text] [Related]

  • 17. Characterization of the accessible genome in the human malaria parasite Plasmodium falciparum.
    Ruiz JL, Tena JJ, Bancells C, Cortés A, Gómez-Skarmeta JL, Gómez-Díaz E.
    Nucleic Acids Res; 2018 Oct 12; 46(18):9414-9431. PubMed ID: 30016465
    [Abstract] [Full Text] [Related]

  • 18. Mapping Chromatin Accessibility in Human Naïve Pluripotent Stem Cells Using ATAC-Seq.
    Cinkornpumin JK, Hossain I, Pastor WA.
    Methods Mol Biol; 2022 Oct 12; 2416():201-211. PubMed ID: 34870838
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 34.