These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


296 related items for PubMed ID: 34496745

  • 21. A new computational strategy for identifying essential proteins based on network topological properties and biological information.
    Qin C, Sun Y, Dong Y.
    PLoS One; 2017; 12(7):e0182031. PubMed ID: 28753682
    [Abstract] [Full Text] [Related]

  • 22. Prediction of essential proteins based on subcellular localization and gene expression correlation.
    Fan Y, Tang X, Hu X, Wu W, Ping Q.
    BMC Bioinformatics; 2017 Dec 01; 18(Suppl 13):470. PubMed ID: 29219067
    [Abstract] [Full Text] [Related]

  • 23. Essential Protein Prediction Based on node2vec and XGBoost.
    Wang N, Zeng M, Li Y, Wu FX, Li M.
    J Comput Biol; 2021 Jul 01; 28(7):687-700. PubMed ID: 34152838
    [Abstract] [Full Text] [Related]

  • 24. Identification of Essential Proteins Based on a New Combination of Local Interaction Density and Protein Complexes.
    Luo J, Qi Y.
    PLoS One; 2015 Jul 01; 10(6):e0131418. PubMed ID: 26125187
    [Abstract] [Full Text] [Related]

  • 25. Protein function annotation based on heterogeneous biological networks.
    Hu S, Luo Y, Zhang Z, Xiong H, Yan W, Jiang M, Zhao B.
    BMC Bioinformatics; 2022 Nov 18; 23(1):493. PubMed ID: 36401161
    [Abstract] [Full Text] [Related]

  • 26. Explore the hidden treasure in protein-protein interaction networks - an iterative model for predicting protein functions.
    Wang D, Hou J.
    J Bioinform Comput Biol; 2015 Oct 18; 13(5):1550026. PubMed ID: 26449174
    [Abstract] [Full Text] [Related]

  • 27. A deep learning framework for identifying essential proteins based on multiple biological information.
    Yue Y, Ye C, Peng PY, Zhai HX, Ahmad I, Xia C, Wu YZ, Zhang YH.
    BMC Bioinformatics; 2022 Aug 04; 23(1):318. PubMed ID: 35927611
    [Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30. Predicting essential proteins by integrating orthology, gene expressions, and PPI networks.
    Zhang X, Xiao W, Hu X.
    PLoS One; 2018 Aug 04; 13(4):e0195410. PubMed ID: 29634727
    [Abstract] [Full Text] [Related]

  • 31. DPCMNE: Detecting Protein Complexes From Protein-Protein Interaction Networks Via Multi-Level Network Embedding.
    Meng X, Xiang J, Zheng R, Wu FX, Li M.
    IEEE/ACM Trans Comput Biol Bioinform; 2022 Aug 04; 19(3):1592-1602. PubMed ID: 33417563
    [Abstract] [Full Text] [Related]

  • 32. A seed expansion-based method to identify essential proteins by integrating protein-protein interaction sub-networks and multiple biological characteristics.
    Zhao H, Liu G, Cao X.
    BMC Bioinformatics; 2023 Nov 30; 24(1):452. PubMed ID: 38036960
    [Abstract] [Full Text] [Related]

  • 33. Construction of dynamic probabilistic protein interaction networks for protein complex identification.
    Zhang Y, Lin H, Yang Z, Wang J.
    BMC Bioinformatics; 2016 Apr 27; 17(1):186. PubMed ID: 27117946
    [Abstract] [Full Text] [Related]

  • 34. United Neighborhood Closeness Centrality and Orthology for Predicting Essential Proteins.
    Li G, Li M, Wang J, Li Y, Pan Y.
    IEEE/ACM Trans Comput Biol Bioinform; 2020 Apr 27; 17(4):1451-1458. PubMed ID: 30596582
    [Abstract] [Full Text] [Related]

  • 35. Identification of essential proteins based on edge features and the fusion of multiple-source biological information.
    Liu P, Liu C, Mao Y, Guo J, Liu F, Cai W, Zhao F.
    BMC Bioinformatics; 2023 May 17; 24(1):203. PubMed ID: 37198530
    [Abstract] [Full Text] [Related]

  • 36. A protein network refinement method based on module discovery and biological information.
    Pan L, Wang H, Yang B, Li W.
    BMC Bioinformatics; 2024 Apr 20; 25(1):157. PubMed ID: 38643108
    [Abstract] [Full Text] [Related]

  • 37. Identifying protein complexes based on node embeddings obtained from protein-protein interaction networks.
    Liu X, Yang Z, Sang S, Zhou Z, Wang L, Zhang Y, Lin H, Wang J, Xu B.
    BMC Bioinformatics; 2018 Sep 21; 19(1):332. PubMed ID: 30241459
    [Abstract] [Full Text] [Related]

  • 38. An integrated method for identifying essential proteins from multiplex network model of protein-protein interactions.
    Athira K, Gopakumar G.
    J Bioinform Comput Biol; 2020 Aug 21; 18(4):2050020. PubMed ID: 32795133
    [Abstract] [Full Text] [Related]

  • 39. ACDMBI: A deep learning model based on community division and multi-source biological information fusion predicts essential proteins.
    Lu P, Tian J.
    Comput Biol Chem; 2024 Oct 21; 112():108115. PubMed ID: 38865861
    [Abstract] [Full Text] [Related]

  • 40. Effective comparative analysis of protein-protein interaction networks by measuring the steady-state network flow using a Markov model.
    Jeong H, Qian X, Yoon BJ.
    BMC Bioinformatics; 2016 Oct 06; 17(Suppl 13):395. PubMed ID: 27766938
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 15.