These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


167 related items for PubMed ID: 34521341

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Molecular evolution of cytochrome b in high- and low-altitude deer mice (genus Peromyscus).
    Gering EJ, Opazo JC, Storz JF.
    Heredity (Edinb); 2009 Mar; 102(3):226-35. PubMed ID: 19107138
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Genetic variation in HIF-2α attenuates ventilatory sensitivity and carotid body growth in chronic hypoxia in high-altitude deer mice.
    Ivy CM, Velotta JP, Cheviron ZA, Scott GR.
    J Physiol; 2022 Sep; 600(18):4207-4225. PubMed ID: 35797482
    [Abstract] [Full Text] [Related]

  • 7. Physiological and genomic evidence that selection on the transcription factor Epas1 has altered cardiovascular function in high-altitude deer mice.
    Schweizer RM, Velotta JP, Ivy CM, Jones MR, Muir SM, Bradburd GS, Storz JF, Scott GR, Cheviron ZA.
    PLoS Genet; 2019 Nov; 15(11):e1008420. PubMed ID: 31697676
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. High-altitude deer mouse hypoxia-inducible factor-2α shows defective interaction with CREB-binding protein.
    Song D, Bigham AW, Lee FS.
    J Biol Chem; 2021 Nov; 296():100461. PubMed ID: 33639161
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Functional genomics of adaptation to hypoxic cold-stress in high-altitude deer mice: transcriptomic plasticity and thermogenic performance.
    Cheviron ZA, Connaty AD, McClelland GB, Storz JF.
    Evolution; 2014 Jan; 68(1):48-62. PubMed ID: 24102503
    [Abstract] [Full Text] [Related]

  • 13. Regulatory changes contribute to the adaptive enhancement of thermogenic capacity in high-altitude deer mice.
    Cheviron ZA, Bachman GC, Connaty AD, McClelland GB, Storz JF.
    Proc Natl Acad Sci U S A; 2012 May 29; 109(22):8635-40. PubMed ID: 22586089
    [Abstract] [Full Text] [Related]

  • 14. Evolutionary and functional insights into the mechanism underlying high-altitude adaptation of deer mouse hemoglobin.
    Storz JF, Runck AM, Sabatino SJ, Kelly JK, Ferrand N, Moriyama H, Weber RE, Fago A.
    Proc Natl Acad Sci U S A; 2009 Aug 25; 106(34):14450-5. PubMed ID: 19667207
    [Abstract] [Full Text] [Related]

  • 15. Admixture on the northern front: population genomics of range expansion in the white-footed mouse (Peromyscus leucopus) and secondary contact with the deer mouse (Peromyscus maniculatus).
    Garcia-Elfring A, Barrett RDH, Combs M, Davies TJ, Munshi-South J, Millien V.
    Heredity (Edinb); 2017 Dec 25; 119(6):447-458. PubMed ID: 28902189
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Using genomic resources for linkage analysis in Peromyscus with an application for characterizing Dominant Spot.
    Shang Z, Horovitz DJ, McKenzie RH, Keisler JL, Felder MR, Davis SW.
    BMC Genomics; 2020 Sep 11; 21(1):622. PubMed ID: 32912160
    [Abstract] [Full Text] [Related]

  • 18. Natural selection drives altitudinal divergence at the albumin locus in deer mice, Peromyscus maniculatus.
    Storz JF, Dubach JM.
    Evolution; 2004 Jun 11; 58(6):1342-52. PubMed ID: 15266982
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.