These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


333 related items for PubMed ID: 34529424

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. One Stone Two Birds: Anomalously Enhancing the Cross-Plane and In-Plane Heat Transfer in 2D/3D Heterostructures by Defects Engineering.
    Wang Q, Xiong Y, Shao C, Li S, Zhang J, Zhang G, Liu X.
    Small Methods; 2024 Dec; 8(12):e2400177. PubMed ID: 38721966
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Thermal conductivity of van der Waals heterostructure of 2D GeS and SnS based on machine learning interatomic potential.
    Li W, Yang C.
    J Phys Condens Matter; 2023 Sep 15; 35(50):. PubMed ID: 37669661
    [Abstract] [Full Text] [Related]

  • 6. Fano Resonance in Near-Field Thermal Radiation of Two-Dimensional Van der Waals Heterostructures.
    Wu H, Liu X, Zhu K, Huang Y.
    Nanomaterials (Basel); 2023 Apr 20; 13(8):. PubMed ID: 37111010
    [Abstract] [Full Text] [Related]

  • 7. Phonon Thermal Transport across Multilayer Graphene/Hexagonal Boron Nitride van der Waals Heterostructures.
    Wu X, Han Q.
    ACS Appl Mater Interfaces; 2021 Jul 14; 13(27):32564-32578. PubMed ID: 34196535
    [Abstract] [Full Text] [Related]

  • 8. Temperature and interlayer coupling induced thermal transport across graphene/2D-SiC van der Waals heterostructure.
    Islam MS, Mia I, Islam ASMJ, Stampfl C, Park J.
    Sci Rep; 2022 Jan 14; 12(1):761. PubMed ID: 35031659
    [Abstract] [Full Text] [Related]

  • 9. Tuning the Thermal Transport of Hexagonal Boron Nitride/Reduced Graphene Oxide Heterostructures.
    Chen SN, Liu XS, Luo RH, Xu EZ, Tian JG, Liu ZB.
    ACS Appl Mater Interfaces; 2022 May 18; 14(19):22626-22633. PubMed ID: 35522991
    [Abstract] [Full Text] [Related]

  • 10. First-principles investigations of the controllable electronic properties and contact types of type II MoTe2/MoS2 van der Waals heterostructures.
    Nguyen ST, Hieu NV, Le-Quoc H, Nguyen-Ba K, Nguyen CV, Phuc HV, Nguyen CQ.
    Nanoscale Adv; 2024 Jul 09; 6(14):3624-3631. PubMed ID: 38989517
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Thermal transport of graphene-C3B superlattices and van der Waals heterostructures: a molecular dynamics study.
    Zhang G, Dong S, Wang X, Xin G.
    Nanotechnology; 2023 Nov 15; 35(5):. PubMed ID: 37879323
    [Abstract] [Full Text] [Related]

  • 13. Control of Thermal Conductance across Vertically Stacked Two-Dimensional van der Waals Materials via Interfacial Engineering.
    Yuan W, Ueji K, Yagi T, Endo T, Lim HE, Miyata Y, Yomogida Y, Yanagi K.
    ACS Nano; 2021 Oct 26; 15(10):15902-15909. PubMed ID: 34585910
    [Abstract] [Full Text] [Related]

  • 14. First-principles investigations on a two-dimensional S3N2/black phosphorene van der Waals heterostructure: mechanical, carrier transport and thermoelectric anisotropy.
    Li J, Wang YP, Zhang S, Duan H, Long M.
    J Phys Condens Matter; 2021 Aug 10; 33(42):. PubMed ID: 34315134
    [Abstract] [Full Text] [Related]

  • 15. Reduced Thermal Transport in the Graphene/MoS2/Graphene Heterostructure: A Comparison with Freestanding Monolayers.
    Srinivasan S, Balasubramanian G.
    Langmuir; 2018 Mar 13; 34(10):3326-3335. PubMed ID: 29429341
    [Abstract] [Full Text] [Related]

  • 16. Excellent thermoelectric performance induced by interface effect in MoS2/MoSe2 van der Waals heterostructure.
    Jia PZ, Zeng YJ, Wu D, Pan H, Cao XH, Zhou WX, Xie ZX, Zhang JX, Chen KQ.
    J Phys Condens Matter; 2020 Jan 30; 32(5):055302. PubMed ID: 31600739
    [Abstract] [Full Text] [Related]

  • 17. Gate-Tunable Semiconductor Heterojunctions from 2D/3D van der Waals Interfaces.
    Miao J, Liu X, Jo K, He K, Saxena R, Song B, Zhang H, He J, Han MG, Hu W, Jariwala D.
    Nano Lett; 2020 Apr 08; 20(4):2907-2915. PubMed ID: 32196351
    [Abstract] [Full Text] [Related]

  • 18. Interface thermal conductivities induced by van der Waals interactions.
    Dong HM, Liang HP, Tao ZH, Duan YF, Milošević MV, Chang K.
    Phys Chem Chem Phys; 2024 Jan 31; 26(5):4047-4051. PubMed ID: 38224156
    [Abstract] [Full Text] [Related]

  • 19. On the Generalized Thermal Conductance Characterizations of Mixed One-Dimensional-Two-Dimensional van der Waals Heterostructures and Their Implication for Pressure Sensors.
    Gao Y, Xu B.
    ACS Appl Mater Interfaces; 2018 Apr 25; 10(16):14221-14229. PubMed ID: 29611416
    [Abstract] [Full Text] [Related]

  • 20. Phonon thermal transport in a graphene/MoSe2 van der Waals heterobilayer.
    Hong Y, Ju MG, Zhang J, Zeng XC.
    Phys Chem Chem Phys; 2018 Jan 24; 20(4):2637-2645. PubMed ID: 29319076
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.