These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
1126 related items for PubMed ID: 34534709
21. 3D Bioprinting of a Bioactive Composite Scaffold for Cell Delivery in Periodontal Tissue Regeneration. Miao G, Liang L, Li W, Ma C, Pan Y, Zhao H, Zhang Q, Xiao Y, Yang X. Biomolecules; 2023 Jun 30; 13(7):. PubMed ID: 37509098 [Abstract] [Full Text] [Related]
22. Role of temperature on bio-printability of gelatin methacryloyl bioink in two-step cross-linking strategy for tissue engineering applications. Janmaleki M, Liu J, Kamkar M, Azarmanesh M, Sundararaj U, Nezhad AS. Biomed Mater; 2020 Dec 16; 16(1):015021. PubMed ID: 33325382 [Abstract] [Full Text] [Related]
23. Osteogenic potentials in canine mesenchymal stem cells: unraveling the efficacy of polycaprolactone/hydroxyapatite scaffolds in veterinary bone regeneration. Taephatthanasagon T, Purbantoro SD, Rodprasert W, Pathanachai K, Charoenlertkul P, Mahanonda R, Sa-Ard-Lam N, Kuncorojakti S, Soedarmanto A, Jamilah NS, Osathanon T, Sawangmake C, Rattanapuchpong S. BMC Vet Res; 2024 Sep 09; 20(1):403. PubMed ID: 39251976 [Abstract] [Full Text] [Related]
24. 3D printed hybrid bone constructs of PCL and dental pulp stem cells loaded GelMA. Buyuksungur S, Hasirci V, Hasirci N. J Biomed Mater Res A; 2021 Dec 09; 109(12):2425-2437. PubMed ID: 34033241 [Abstract] [Full Text] [Related]
25. 3D bioprinting of graphene oxide-incorporated cell-laden bone mimicking scaffolds for promoting scaffold fidelity, osteogenic differentiation and mineralization. Zhang J, Eyisoylu H, Qin XH, Rubert M, Müller R. Acta Biomater; 2021 Feb 09; 121():637-652. PubMed ID: 33326888 [Abstract] [Full Text] [Related]
26. Reversible physical crosslinking strategy with optimal temperature for 3D bioprinting of human chondrocyte-laden gelatin methacryloyl bioink. Gu Y, Zhang L, Du X, Fan Z, Wang L, Sun W, Cheng Y, Zhu Y, Chen C. J Biomater Appl; 2018 Nov 09; 33(5):609-618. PubMed ID: 30360677 [Abstract] [Full Text] [Related]
27. Cell-Laden Nanocellulose/Chitosan-Based Bioinks for 3D Bioprinting and Enhanced Osteogenic Cell Differentiation. Maturavongsadit P, Narayanan LK, Chansoria P, Shirwaiker R, Benhabbour SR. ACS Appl Bio Mater; 2021 Mar 15; 4(3):2342-2353. PubMed ID: 35014355 [Abstract] [Full Text] [Related]
28. Nanocomposite Clay-Based Bioinks for Skeletal Tissue Engineering. Cidonio G, Glinka M, Kim YH, Dawson JI, Oreffo ROC. Methods Mol Biol; 2021 Mar 15; 2147():63-72. PubMed ID: 32840811 [Abstract] [Full Text] [Related]
29. Low-Concentration Gelatin Methacryloyl Hydrogel with Tunable 3D Extrusion Printability and Cytocompatibility: Exploring Quantitative Process Science and Biophysical Properties. Das S, Valoor R, Ratnayake P, Basu B. ACS Appl Bio Mater; 2024 May 20; 7(5):2809-2835. PubMed ID: 38602318 [Abstract] [Full Text] [Related]
36. Collagen-based bioinks for hard tissue engineering applications: a comprehensive review. Marques CF, Diogo GS, Pina S, Oliveira JM, Silva TH, Reis RL. J Mater Sci Mater Med; 2019 Mar 06; 30(3):32. PubMed ID: 30840132 [Abstract] [Full Text] [Related]
37. Direct 3D Bioprinting of Tough and Antifatigue Cell-Laden Constructs Enabled by a Self-Healing Hydrogel Bioink. Liu Q, Yang J, Wang Y, Wu T, Liang Y, Deng K, Luan G, Chen Y, Huang Z, Yue K. Biomacromolecules; 2023 Jun 12; 24(6):2549-2562. PubMed ID: 37115848 [Abstract] [Full Text] [Related]
39. Osteoregenerative Potential of 3D-Printed Poly ε-Caprolactone Tissue Scaffolds In Vitro Using Minimally Manipulative Expansion of Primary Human Bone Marrow Stem Cells. Lawrence LM, Salary RR, Miller V, Valluri A, Denning KL, Case-Perry S, Abdelgaber K, Smith S, Claudio PP, Day JB. Int J Mol Sci; 2023 Mar 03; 24(5):. PubMed ID: 36902373 [Abstract] [Full Text] [Related]