These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


149 related items for PubMed ID: 34545740

  • 1. Transcriptomic and Metabolomic Analyses Provide Insights into the Enhancement of Torulene and Torularhodin Production in Rhodotorula glutinis ZHK under Moderate Salt Conditions.
    Li C, Cheng P, Li Z, Xu Y, Sun Y, Qin D, Yu G.
    J Agric Food Chem; 2021 Sep 29; 69(38):11523-11533. PubMed ID: 34545740
    [Abstract] [Full Text] [Related]

  • 2. Transcriptomic and metabolomic analyses reveal the positive effect of moderate concentration of sodium chloride treatment on the production of β-carotene, torulene, and torularhodin in oleaginous red yeast Rhodosporidiobolus odoratus XQR.
    Zhao D, Li C, Zeng N, Wang D, Yu G, Zhang N, Li B.
    Food Chem (Oxf); 2024 Dec 30; 9():100221. PubMed ID: 39399738
    [Abstract] [Full Text] [Related]

  • 3. Transcriptomic and metabolomic analysis reveals the potential mechanisms underlying the improvement of β-carotene and torulene production in Rhodosporidiobolus colostri under low temperature treatment.
    Li C, Xu Y, Li Z, Cheng P, Yu G.
    Food Res Int; 2022 Jun 30; 156():111158. PubMed ID: 35651024
    [Abstract] [Full Text] [Related]

  • 4. Utilization of olive mill wastewater for selective production of lipids and carotenoids by Rhodotorula glutinis.
    Keskin A, Ünlü AE, Takaç S.
    Appl Microbiol Biotechnol; 2023 Aug 30; 107(15):4973-4985. PubMed ID: 37329489
    [Abstract] [Full Text] [Related]

  • 5. Increased torulene accumulation in red yeast Sporidiobolus pararoseus NGR as stress response to high salt conditions.
    Li C, Zhang N, Li B, Xu Q, Song J, Wei N, Wang W, Zou H.
    Food Chem; 2017 Dec 15; 237():1041-1047. PubMed ID: 28763948
    [Abstract] [Full Text] [Related]

  • 6. Salt stress increases carotenoid production of Sporidiobolus pararoseus NGR via torulene biosynthetic pathway.
    Li C, Li B, Zhang N, Wei N, Wang Q, Wang W, Xie Y, Zou H.
    J Gen Appl Microbiol; 2019 Jul 19; 65(3):111-120. PubMed ID: 30487371
    [Abstract] [Full Text] [Related]

  • 7. Rhodotorula glutinis-potential source of lipids, carotenoids, and enzymes for use in industries.
    Kot AM, Błażejak S, Kurcz A, Gientka I, Kieliszek M.
    Appl Microbiol Biotechnol; 2016 Jul 19; 100(14):6103-6117. PubMed ID: 27209039
    [Abstract] [Full Text] [Related]

  • 8. Torulene and torularhodin: "new" fungal carotenoids for industry?
    Kot AM, Błażejak S, Gientka I, Kieliszek M, Bryś J.
    Microb Cell Fact; 2018 Mar 27; 17(1):49. PubMed ID: 29587755
    [Abstract] [Full Text] [Related]

  • 9. Activation of torularhodin production by Rhodotorula glutinis using weak white light irradiation.
    Sakaki H, Nakanishi T, Tada A, Miki W, Komemushi S.
    J Biosci Bioeng; 2001 Mar 27; 92(3):294-7. PubMed ID: 16233099
    [Abstract] [Full Text] [Related]

  • 10. Production of torularhodin, torulene, and β-carotene by Rhodotorula yeasts.
    Moliné M, Libkind D, van Broock M.
    Methods Mol Biol; 2012 Mar 27; 898():275-83. PubMed ID: 22711133
    [Abstract] [Full Text] [Related]

  • 11. [Analysis of pigments from Rhodotorula glutinis by Raman spectroscopy and thin layer chromatography].
    Yuan YF, Tao ZH, Wang X, Li YQ, Liu JX.
    Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Mar 27; 32(3):695-8. PubMed ID: 22582635
    [Abstract] [Full Text] [Related]

  • 12. [Carotenoids and fatty acids in red yeasts Sporobolomyces roseus and Rhodotorula glutinis].
    Davoli P, Mierau V, Weber RW.
    Prikl Biokhim Mikrobiol; 2004 Mar 27; 40(4):460-5. PubMed ID: 15455720
    [Abstract] [Full Text] [Related]

  • 13. Effect of active oxygen species on the productivity of torularhodin by Rhodotorula glutinis No. 21.
    Sakaki H, Nochide H, Komemushi S, Miki W.
    J Biosci Bioeng; 2002 Mar 27; 93(3):338-40. PubMed ID: 16233212
    [Abstract] [Full Text] [Related]

  • 14. Torularhodin and torulene are the major contributors to the carotenoid pool of marine Rhodosporidium babjevae (Golubev).
    Sperstad S, Lutnaes BF, Stormo SK, Liaaen-Jensen S, Landfald B.
    J Ind Microbiol Biotechnol; 2006 Apr 27; 33(4):269-73. PubMed ID: 16341835
    [Abstract] [Full Text] [Related]

  • 15. Diversity of Red Yeasts in Various Regions and Environments of Poland and Biotechnological Potential of the Isolated Strains.
    Kot AM, Sęk W, Kieliszek M, Błażejak S, Pobiega K, Brzezińska R.
    Appl Biochem Biotechnol; 2024 Jun 27; 196(6):3274-3316. PubMed ID: 37646889
    [Abstract] [Full Text] [Related]

  • 16. Formation of carotenoids by rhodotorula glutinis in whey ultrafiltrate.
    Frengova G, Simova E, Pavlova K, Beshkova D, Grigorova D.
    Biotechnol Bioeng; 1994 Oct 27; 44(8):888-94. PubMed ID: 18618906
    [Abstract] [Full Text] [Related]

  • 17. Genomics and lipidomics analysis of the biotechnologically important oleaginous red yeast Rhodotorula glutinis ZHK provides new insights into its lipid and carotenoid metabolism.
    Li CJ, Zhao D, Cheng P, Zheng L, Yu GH.
    BMC Genomics; 2020 Nov 26; 21(1):834. PubMed ID: 33243144
    [Abstract] [Full Text] [Related]

  • 18. Effect of exogenous stress factors on the biosynthesis of carotenoids and lipids by Rhodotorula yeast strains in media containing agro-industrial waste.
    Kot AM, Błażejak S, Kieliszek M, Gientka I, Bryś J, Reczek L, Pobiega K.
    World J Microbiol Biotechnol; 2019 Oct 01; 35(10):157. PubMed ID: 31576445
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.